Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-25T04:04:17.266Z Has data issue: false hasContentIssue false

Herbicide Programs for Control of Glyphosate-Resistant Volunteer Corn in Glufosinate-Resistant Soybean

Published online by Cambridge University Press:  20 January 2017

Parminder S. Chahal
Affiliation:
Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE 68583-0915
Amit J. Jhala*
Affiliation:
Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE 68583-0915
*
Corresponding author's E-mail: Amit.Jhala@unl.edu.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Glyphosate-resistant (GR) volunteer corn is a significant problem weed in soybean grown in rotation with corn in the midwestern United States and eastern Canada. The objective of this study was to evaluate the efficacy of glufosinate applied in single or sequential applications compared with acetyl-coenzyme A carboxylase (ACCase) inhibitors applied alone or tank mixed with glufosinate for controlling GR volunteer corn in glufosinate-resistant soybean. At 15 d after early-POST (DAEP), ACCase inhibitors applied alone controlled volunteer corn 76 to 93% compared to 71 to 82% control when tank mixed with glufosinate. The expected volunteer corn control achieved by tank mixing ACCase inhibitors and glufosinate was greater than the glufosinate alone, indicating that glufosinate antagonized ACCase inhibitors at 15 DAEP, but not at later rating dates. ACCase inhibitors applied alone or tank mixed with glufosinate followed by late-POST glufosinate application controlled volunteer corn and green foxtail ≥ 97% at 30 DAEP. Single early-POST application of glufosinate controlled common waterhemp and volunteer corn 53 to 78%, and green foxtail 72 to 93% at 15 DAEP. Single as well as sequential glufosinate applications controlled green foxtail and volunteer corn greater than or equal to 90%, and common waterhemp greater than 85% at 75 d after late-POST (DALP). Contrast analysis suggested that glufosinate applied sequentially provided greater control of volunteer corn at 15 and 75 DALP compared to a single application. Similar results were reflected in volunteer corn density and biomass at 75 DALP. Volunteer corn interference did not affect soybean yield, partly because of extreme weather conditions (hail and high winds) in both years of this study.

El maíz voluntario resistente a glyphosate (GR) es un problema significativo de malezas en soja producida en rotación con maíz en el centro oeste de los Estados Unidos y en el este de Canadá. El objetivo de este estudio fue evaluar la eficacia de glufosinate aplicado solo o en aplicaciones secuenciales comparado con inhibidores de acetyl-coenzyme A carboxylase (ACCase) aplicados solos o en mezclas en tanque con glufosinate para el control de maíz GR voluntario en soja resistente a glufosinate. A 15 d después de la aplicación POST temprana (DAEP), los inhibidores de ACCase aplicados solos controlaron el maíz voluntario 76 a 93% comparado con 71 a 82% de control con la mezcla en tanque con glufosinate. El control esperado de maíz voluntario con las mezclas en tanque con ACCase y glufosinate fue mayor que el de glufosinate solo, lo que indicó que glufosinate antagonizó a los inhibidores de ACCase a 15 DAEP, pero no en fechas de evaluación posteriores. Los inhibidores de ACCase aplicados solos o en mezclas en tanque con glufosinate seguidos de aplicaciones tardías POST de glufosinate controlaron el maíz voluntario y Setaria viridis ≥ 97% a 30 DAEP. Aplicaciones POST tempranas de glufosinate solo controlaron Amaranthus rudis y maíz voluntario 53 a 78%, y S. viridis 72 a 93% a 15 DAEP. Aplicaciones solas y secuenciales de glufosinate controlaron S. viridis y maíz voluntario en 90% o más, y A. rudis más de 85% a 75 d después de la aplicación POST tardía (DALP). Análisis de contrastes sugirieron que glufosinate aplicado secuencialmente brindó mayor control del maíz voluntario a 15 y 75 DALP al compararse con una única aplicación. Resultados similares fueron observados en la densidad y biomasa del maíz voluntario a 75 DALP. La interferencia del maíz voluntario no afectó el rendimiento de la soja, parcialmente porque se presentaron condiciones extremas del estado del tiempo (granizo y vientos fuertes) en los dos años de este estudio.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

References

Literature Cited

Abit, MJM, Al-Khatib, K, Olson, BL, Stahlman, PW, Geier, PW, Thompson, CR, Currie, RS, Schlegel, AJ, Holman, JD, Hudson, KA, Shoup, DE, Moechnig, MJ, Grichar, WJ, Bean, BW (2011) Efficacy of postemergence herbicides tank mixes in aryloxyphenoxypropionate-resistant grain sorghum. Crop Prot 30:16231628 CrossRefGoogle Scholar
Andersen, RN, Ford, JH, Lueschen, WE (1982) Controlling volunteer corn (Zea mays) in soybeans (Glycine max) with diclofop and glyphosate. Weed Sci 30:132136 Google Scholar
Andersen, RN, Geadelmann, JL (1982) The effect of parentage on the control of volunteer corn (Zea mays) in soybeans (Glycine max). Weed Sci 30:127131 Google Scholar
Anonymous (2014) Liberty 280 SL herbicide specimen label. http://www.cdms.net/LDat/ldUA5004.pdf. Accessed: August 15, 2014Google Scholar
Askew, SD, Shaw, DR, Arnold, JC (1997) Weed control in Liberty-Link soybean. Page 59 in Proceedings of 50th Annual Meeting of Southern Weed Science Society, Houston, TX Google Scholar
Aulakh, JS, Jhala, AJ (2015) Comparison of glufosinate-based herbicide programs for broad-spectrum weed control in glufosinate-resistant soybean. Weed Technol 29:419430 Google Scholar
Aulakh, JS, Price, AJ, Balkcom, KS (2011) Weed management and cotton yield under two row spacings in conventional and conservation tillage systems utilizing conventional, glufosinate-, and glyphosate-based weed management systems. Weed Technol 25:542547 CrossRefGoogle Scholar
Aulakh, JS, Price, AJ, Enloe, SF, Santen, EV, Wehtje, G, Patterson, MG (2012) Integrated Palmer amaranth management in glufosinate-resistant cotton: I. Soil-inversion, high-residue cover crops and herbicide regimes. Agronomy 2:295311 CrossRefGoogle Scholar
Aulakh, JS, Price, AJ, Enloe, SF, Wehtje, G, Patterson, MG (2013) Integrated Palmer amaranth management in glufosinate-resistant cotton: II. Primary, secondary and conservation tillage. Agronomy 3:2842 Google Scholar
Avila-Garcia, WV, Sanchez-Olguin, E, Hulting, AG, Mallory-Smith, C (2012) Target-site mutation associated with glufosinate resistance in Italian ryegrass (Lolium perenne L. ssp. multiflorum). Pest Manag Sci 68:12481254 Google Scholar
Barnett, KA, Culpepper, AS, York, AC, Steckel, LE (2013) Palmer amaranth (Amaranthus palmeri) control by glufosinate plus fluometuron applied postemergence to WideStrike® cotton. Weed Technol 27:291297 Google Scholar
Beckett, TH, Stoller, EW (1988) Volunteer corn (Zea mays) interference in soybeans (Glycine max). Weed Sci 36:159166 Google Scholar
Beckett, TH, Stoller, EW, Bode, LE (1992) Quizalofop and sethoxydim activity as affected by adjuvants and ammonium fertilizers. Weed Sci 40:1219 CrossRefGoogle Scholar
Beckie, HJ, Hall, LM (2014) Genetically-modified herbicide-resistant (GMHR) crops a two-edged sword? An Americas perspective on development and effect on weed management. Crop Prot 66:4045 Google Scholar
Beckie, HJ, Tardif, FJ (2012) Herbicide cross resistance in weeds. Crop Prot 35:1528 CrossRefGoogle Scholar
Bethke, RK, Molin, WT, Sprague, C, Penner, D (2013) Evaluation of the interaction between glyphosate and glufosinate. Weed Sci 61:4147 CrossRefGoogle Scholar
Beyers, JT, Smeda, RJ, Johnson, WG (2002) Weed management programs in glufosinate-resistant soybean (Glycine max). Weed Technol 16:267273 Google Scholar
Burke, IC, Askew, SD, Corbett, JL, Wilcut, JW (2005) Glufosinate antagonizes clethodim control of goosegrass (Eleusine indica). Weed Technol 19:664668 Google Scholar
Castle, LA, Wu, GS, McElroy, D (2006) Agricultural input traits: past, present and future. Curr Opin Biotechnol 17:105112 Google Scholar
Chahal, PS, Bernards, ML, Kruger, GR, Blanco-Canqui, H, Jhala, AJ (2015) Impact of glyphosate-resistant volunteer corn density, control timing, and late season emergence on soybean yield. Proceedings of 55th Annual Meeting of Weed Science Society of America (WSSA), Lexington, KY Google Scholar
Chahal, PS, Kruger, G, Blanco-Canqui, H, Jhala, AJ (2014) Efficacy of pre-emergence and post-emergence soybean herbicides for control of glufosinate-, glyphosate-, and imidazolinone-resistant volunteer corn. J Agric Sci 6:131140 Google Scholar
Clewis, SB, Thomas, WE, Everman, WJ, Wilcut, JW (2008) Glufosinate-resistant corn interference in glufosinate-resistant cotton. Weed Technol 22:211216 Google Scholar
Coetzer, E, Al-Khatib, A, Peterson, DE (2002) Glufosinate efficacy on Amaranthus species in glufosinate-resistant soybean. Weed Technol 16:326331 Google Scholar
Colby, SR (1967) Calculating synergistic and antagonistic responses of herbicide combinations. Weeds 15:2022 Google Scholar
Corbett, JL, Askew, SD, Thomas, WE, Wilcut, JW (2004) Weed efficacy evaluations for bromoxynil, glufosinate, glyphosate, pyrithiobac, and sulfosate. Weed Technol 18:443453 Google Scholar
Craigmyle, BD, Ellis, JM, Bradley, KW (2013) Influence of herbicide program on weed management in soybean with resistance to glufosinate and 2,4-D. Weed Technol 27:7884 CrossRefGoogle Scholar
Culpepper, AS, York, AC, Brownie, C (1999) Influence of bromoxynil on annual grass control by graminicides. Weed Sci 47:123128 Google Scholar
Culpepper, AS, York, AC, Jennings, KM, Batts, RB (2000) Weed management in glufosinate- and glyphosate-resistant soybean (Glycine max). Weed Technol 14:7788 CrossRefGoogle Scholar
Culpepper, AS, York, AC, Jennings, KM, Batts, RB (1998) Interaction of bromoxynil and postemergence graminicides on large crabgrass (Digitaria sanguinalis). Weed Technol 12:554559 Google Scholar
Culpepper, AS, York, AC, Roberts, P, Whitaker, JR (2009) Weed control and crop response to glufosinate applied to ‘PHY 485 WRF' cotton. Weed Technol 23:356362 Google Scholar
Davis, VM, Marquardt, PT, Johnson, WJ (2008) Volunteer corn in northern Indiana soybean correlates to glyphosate-resistant corn adoption. Online. Crop Manag. DOI: Google Scholar
Deen, W, Hamill, A, Shropshire, C, Soltani, N, Sikkema, PH (2006) Control of glyphosate-resistant corn (Zea mays) in glyphosate-resistant soybean (Glycine max). Weed Technol 20:261266 Google Scholar
Devine, MD, Duke, SO, Fedtke, C (1993). Inhibition of amino acid biosynthesis. Pages 251291 in Physiology of Herbicide Action. Englewood Cliffs, NJ: Prentice-Hall Google Scholar
Earnest, LD, Webster, EP, Hooks, GG (1998) Systems for weed control in Liberty tolerant corn. Page 261 in Proceedings of 51st Southern Weed Science Society meeting, Birmingham, AL Google Scholar
Ganie, ZA, Stratman, G, Jhala, AJ (2015) Response of selected glyphosate-resistant broadleaved weeds to premix of fluthiacet-methyl and mesotrione (Solstice™) applied at two growth stages. Can J Plant Sci. DOI: Google Scholar
Gardner, AP, York, AC, Jordan, DL, Monks, DW (2006) Glufosinate antagonizes postemergence graminicides applied to annual grasses and johnsongrass. J Cotton Sci 10:319327 Google Scholar
Heap IM (2014a) International survey of herbicide resistant weeds: weeds resistant to EPSP synthase inhibitors (G/9). http://www.weedscience.org/summary/MOA.aspx?MOAID=12. Accessed August 12, 2014Google Scholar
Heap IM (2014b) International survey of herbicide resistant weeds: weeds resistant to the herbicide glufosinate-ammonium. http://www.weedscience.org/summary/ResistByActive.aspx. Accessed October 27, 2014Google Scholar
Hinchee, MAW, Padgette, SR, Kishore, GM, Delannay, X, Fraley, RT (1993) Herbicide-tolerant crops. Pages 243263 in Kung, S, Wu, R, eds. Transgenic Plants. Volume 1. San Diego, CA: Academic Press Google Scholar
Holshouser, DL, Coble, HD (1990) Compatibility of sethoxydim with five postemergence broadleaf herbicides. Weed Technol 4:128133 CrossRefGoogle Scholar
Jalaludin, A, Ngim, J, Bali, BB, Zazali, A (2010) Preliminary findings of potentially resistant goosegrass (Eleusine indica) to glufosinate-ammonium in Malaysia. Weed Biol Manag 10:256260 Google Scholar
Jhala, AJ, Knezevic, SZ, Ganie, ZA, Singh, M (2014) Integrated weed management in corn (Zea mays L.). Pages 177196 in Chauhan, B, Mahajan, G, eds. Recent Advances in Weed Management. New York: Springer Google Scholar
Jhala, AJ, Ramirez, AHM, and Singh, M (2013) Tank mixing saflufenacil, glufosinate and indaziflam improved burndown and residual weed control. Weed Technol 27:422429 Google Scholar
Johnson, DB, Norsworthy, JK, Scott, RC (2014) Herbicide programs for controlling glyphosate-resistant johnsongrass (Sorghum halepense) in glufosinate-resistant soybean. Weed Technol 28:1018 Google Scholar
Jugenheimer, RW (1976) Heterosis. Pages 5560 in Sprague, GF, Dudley, JW, eds. Corn: Improvement, Seed Production, and Uses. New York: John Wiley & Sons Google Scholar
Kaur, S, Sandell, LD, Lindquist, JL, Jhala, AJ (2014) Glyphosate-resistant giant ragweed (Ambrosia trifida) control in glufosinate-resistant soybean. Weed Technol 28:569577 Google Scholar
Krupke, C, Marquardt, PT, Johnson, WG, Weller, S, Conley, SP (2009) Volunteer corn presents new challenges for insect resistance management. Agron J 101:797799 CrossRefGoogle Scholar
Marquardt, P, Krupke, C, Johnson, WG (2012) Competition of transgenic volunteer corn with soybean and the effect on western corn rootworm emergence. Weed Sci 60:193198 Google Scholar
Norsworthy, JK, Ward, SM, Shaw, DR, Llewellyn, RS, Nichols, RL, Webster, TM, Bradley, KW, Frisvold, G, Powles, SB, Burgos, NR, Witt, WW, Barrett, M (2012) Reducing the risks of herbicide resistance: Best management practices and recommendations. Weed Sci 60:3162 Google Scholar
Owen, M (2008) Weed species shifts in glyphosate-resistant crops. Pest Manag Sci 64:377387 Google Scholar
Sarangi, D, Sandell, LD, Knezevic, SZ, Aulakh, JS, Lindquist, JL, Irmak, S, Jhala, AJ (2015) Confirmation and control of glyphosate-resistant common waterhemp (Amaranthus rudis) in Nebraska. Weed Technol 29:8292 Google Scholar
Shauck, TC, Smeda, RJ (2012) Control of glyphosate-resistant corn (Zea mays) with glufosinate or imazethapyr plus imazapyr in a replant situation. Weed Technol 26:417421 Google Scholar
Shaw, JT, Paullus, JH, Luckmann, WH (1978) Corn rootworm oviposition in soybeans. Econ Entomol 71:189191 Google Scholar
Sikkema, PH, Soltani, N (2014) Control of volunteer Enlist corn in soybean. Page 69 in Proceedings of the 69th North Central Weed Science Society Annual Meeting. Minneapolis, MN: North Central Weed Science Society Google Scholar
Singh, M, Tucker, DPH (1987) Glufosinate (Ignite): a new promising postemergence herbicide for citrus. Pages 5861 in Proceedings of the 100th Annual Meeting of the Florida State Horticulture Society, Orlando, FL Google Scholar
Soltani, N, Shropshire, C, Sikkema, PH (2006) Control of volunteer glyphosate-tolerant maize (Zea mays) in glyphosate-tolerant soybean (Glycine max). Crop Prot 25:178181 Google Scholar
Steckel, GJ, Wax, LM, Simmons, FW, Phillips, WH II (1997) Glufosinate efficacy on annual weeds is influenced by rate and growth stage. Weed Technol 11:484488 Google Scholar
Steckel, LE, Thompson, MA, Hayes, RM (2009) Herbicide options for controlling glyphosate-tolerant corn in a corn replant situation. Weed Technol 23:243246 Google Scholar
Terry, RM, Marquardt, PT, Camberato, JJ, Johnson, WG (2012) Effect of plant nitrogen concentration on the response of glyphosate-resistant corn hybrids and their progeny to clethodim and glufosinate. Weed Sci 60:121125 Google Scholar
[USDA] U.S. Department of Agriculture–Economic Research Service (2014) http://www.ers.usda.gov/data-products/adoption-of-genetically-engineered-crops-in-the-us/recent-trends-in-ge-adoption.aspx Accessed October 27, 2014Google Scholar
Vidrine, PR, Reynolds, DB, Blouin, DC (1995) Grass control in soybean (Glycine max) with graminicides applied alone and in mixtures. Weed Technol 9:6872 Google Scholar
Wendler, C, Barniski, M, Wild, A (1990) Effect of phosphinothricin (glufosinate) on photosynthesis and photorespiration of C3 and C4 plants. Photosynth Res 24:5561 Google Scholar
Whitaker, JR, York, AC, Jordan, DL, Culpepper, AS (2011a) Weed management with glyphosate- and glufosinate-based systems in PHY 485 WRF Cotton. Weed Technol 25:183191 CrossRefGoogle Scholar
Whitaker, JR, York, AC, Jordan, DL, Culpepper, AS, Sosnoskie, LM (2011b) Residual herbicides for Palmer amaranth control. Cotton Sci 15:8999 Google Scholar
Wild, A, Wendler, C (1991) Effect of glufosinate (phosphinothricin) on amino acid content, photorespiration, and photosynthesis. Pesticide Sci 30:422424 Google Scholar
Wilson, R, Sandell, LD, Klein, R, Bernards, M (2010) Volunteer corn control. Pages 212215 in Proceedings of 2010 Crop Production Clinics. Lincoln, NE: University of Nebraska–Lincoln Extension Google Scholar
Young, BG, Hart, SE (1997) Control of volunteer sethoxydim-resistant corn (Zea mays) in soybean (Glycine max). Weed Technol 11:649655 Google Scholar