Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-23T04:25:27.447Z Has data issue: false hasContentIssue false

Evaluation of Mowing Height and Fertilizer Application Rate on Quality and Weed Abundance of Five Home Lawn Grasses

Published online by Cambridge University Press:  20 January 2017

Brad T. DeBels*
Affiliation:
Department of Soil Science, University of Wisconsin-Madison, 1525 Observatory Drive, Madison, WI 53706
Shane E. Griffith
Affiliation:
Department of Soil Science, University of Wisconsin-Madison, 1525 Observatory Drive, Madison, WI 53706
William C. Kreuser
Affiliation:
Department of Soil Science, University of Wisconsin-Madison, 1525 Observatory Drive, Madison, WI 53706
Eric S. Melby
Affiliation:
Department of Soil Science, University of Wisconsin-Madison, 1525 Observatory Drive, Madison, WI 53706
Douglas J. Soldat
Affiliation:
Department of Soil Science, University of Wisconsin-Madison, 1525 Observatory Drive, Madison, WI 53706
*
Corresponding author's E-mail: debels@wisc.edu

Abstract

Evaluation of turfgrass performance at low nitrogen fertility levels is important because many home lawns are fertilized below common recommendations. The objective of this study was to evaluate visible quality and weed susceptibility of common and alternative cool season grasses under multiple management regimes in Wisconsin. A split-split plot completely randomized block design was used to evaluate ‘Kingfisher' Kentucky bluegrass (Kentucky bluegrass), ‘Kenblue' Kentucky bluegrass, ‘Victory II' chewings fescue, ‘Grande II' tall fescue, and ‘Jiffe II' perennial ryegrass. Each species was mowed at 3.5, 6.0, or 8.5 cm, and fertilized with 0, 98, or 196 kg ha−1 yr−1 of nitrogen. Visible quality and weed cover were evaluated four times annually for 3 yr. Tall fescue had the greatest turf quality across all treatments. Kingfisher Kentucky bluegrass, an improved variety, responded most dramatically to nitrogen fertilization, with quality rating improved from 5.1 to 7.1 when annual nitrogen applications totaled 196 kg ha−1 compared to the nonfertilized control. Kenblue Kentucky bluegrass, a common variety, had the greatest weed cover at all mowing heights and fertilizer rates. Assessment of common dandelion flowers by digital image analysis revealed that improved and common Kentucky bluegrass had greater common dandelion cover than fine or tall fescue when herbicides were withheld for 2.5 yr. Background soil fertility was found to have a significant impact on visible quality and weed cover. In an area with eroded, low-fertility soil, improved Kentucky bluegrass required 196 kg N ha−1 yr−1 to maintain high quality and limit weed invasion. These results suggest that tall fescue is best suited to low and high input conditions, while improved varieties of Kentucky bluegrass performed acceptably only under high inputs.

La evaluación del desempeño del césped a niveles de fertilidad bajos en nitrógeno es importante porque los céspedes caseros son fertilizados por debajo de las recomendaciones comunes. El objetivo de este estudio fue evaluar la calidad visual y la susceptibilidad a las malezas de zacates de clima frío comunes y alternativos bajo múltiples regímenes de manejo en Wisconsin. Se usó un diseño de bloques completos al azar en parcelas subdivididas para evaluar Poa pratensis 'Kingfisher' y 'Kenblue', Festuca rubra var. commutata 'Victory II', Lolium arundinaceum 'Grande II' y Lolium perenne 'Jiffe II'. Cada especie fue podada a 3.55, 6.0 ó 8.5 cm, y fertilizada con 0.98 ó 196 kg ha−1 año−1 de nitrógeno. La calidad visual y la cobertura de malezas fueron evaluadas cuatro veces anualmente durante 3 años. L. arundinaceum tuvo la mayor calidad en todos los tratamientos. Kingfisher, una variedad mejorada, respondió más dramáticamente a la fertilización nitrogenada, con una mejora en la evaluación visual al compararse con el testigo sin fertilización de 5.1 a 7.1 cuando las aplicaciones anuales de nitrógeno totalizaron 196 kg ha−1. Kenblue, una variedad común, tuvo la mayor cobertura de malezas en todas las alturas de poda y dosis de fertilización. Evaluaciones de las flores de Taraxacum officinale, usando análisis de imágenes digitales, revelaron que variedades comunes y mejoradas de P. pratensis tuvieron coberturas mayores de esta maleza que F. rubra y L. arundinaceum cuando se detuvo el uso de herbicidas durante 2.5 años. Se encontró que el nivel inicial de fertilidad del suelo tuvo un impacto significativo en la calidad visual y la cobertura de malezas. En un área con suelos erosionados y baja fertilidad, variedades mejoradas de P. pratensis requirieron 196 kg N ha−1 año−1 para mantener una calidad alta y limitar la invasión de malezas. Estos resultados sugieren que L. arundinaceum está mejor adaptado a condiciones de altos y bajos insumos, mientras que las variedades mejoradas de P. pratensis se desempeñaron en forma aceptable solamente bajo condiciones de altos insumos.

Type
Notes
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adams, W. A. 1980. Effects of nitrogen fertilization and cutting height on the shoot growth, nutrient removal, and turfgrass composition of an initially perennial ryegrass dominant sports turf. Pages 343350 in Beard, J. B., ed. Proceedings of the 3rd International Turfgrass Research Conference. Madison, WI : ASA, CSSA, SSSA, and International Turfgrass Society.CrossRefGoogle Scholar
Augustin, B. 2007. Perception vs. reality: how much nitrogen do homeowners put on their lawn?. in Annual meeting abstracts [CD-Rom]. Madison, WI : ASA, CSSA, and SSA.Google Scholar
Beard, J. B. 1966. Direct low temperature injury of nineteen turfgrasses. Quart. Bull. [Michigan] 48 :377383.Google Scholar
Burns, J. C. and Chamblee, D. S. 1976. Adaptation and distribution of tall fescue (Festuca arundinacea Screb.). Agron. Abstr. 68 :82.Google Scholar
Busey, P. 2003. Cultural management of weeds in turfgrass: a review. Crop Sci. 43 :18991911.Google Scholar
Calhoun, R. N., Rinehart, G. J., Hathaway, A. D., and Buhler, D. D. 2005. Maximizing cultural practices to minimize weed pressure and extend herbicide treatment interval in a cool-season turfgrass mixture. Int. Turfgrass Soc. Res. J. 10 :11841188.Google Scholar
Callahan, L. M. and Overton, J. R. 1978. Effects of lawn management practices on bermudagrass turf. Pages 3740 in Tennessee Farm and Home Science No. 108. Knoxville, TN : Tennessee Agricultural Experiment Station.Google Scholar
Craul, P. J. 1992. Urban soil in landscape design. Hoboken, NJ : John Wiley. & Sons, Inc.Google Scholar
Davis, R. R. 1958. The effect of other species and mowing height on persistence of lawn grasses. Agron. J. 50 :671673.Google Scholar
Dernoeden, P. H., Carroll, M. J., and Krouse, J. M. 1993. Weed management and tall fescue quality as influenced by mowing, nitrogen, and herbicides. Crop Sci. 33 :10551061.Google Scholar
Dierking, R. M., Young, C.A., and Kallenbach, R. L. 2012. Mediterranean and continental tall fescue: I. Effects of endophyte status on leaf extension, proline, mono- and disaccharides, fructan, and freezing survivability. Crop Sci. 52 :451459.Google Scholar
Diesburg, K. L., Christians, N. E., Moore, R., Branham, B., Danneberger, T. K., Reicher, Z. J., Voigt, T., Minner, D. D., and Newman, R. 1997. Species for low-input sustainable turf in the U.S. upper Midwest. Agron. J. 89 :690694.Google Scholar
Dunn, J. H., Nelson, C. J., and Winfrey, R. D. 1981. Effects of mowing and fertilization on quality of ten Kentucky bluegrass cultivars. Pages 293301 in Sheard, R. W., ed. Proceedings of the 4th International Turfgrass Research Conference. Guelph, ON : Ontario Agricultural College, University of Guelph, and International Turfgrass Society.Google Scholar
Havlin, J. H., Tisdale, S. L., Beaton, J. D., and Nelson, W. L. 2005. Soil Fertility and Fertilizers, an Introduction to Nutrient Management. Upper Saddle River, NJ : Pearson Prentice Hall. Pp. 117122.Google Scholar
Heckman, J. R., Liu, H., Hill, W., DeMilia, M., and Anastasia, W. L. 2000. Kentucky bluegrass responses to mowing practice and nitrogen fertility management. J. Sustain. Agric. 15 :2533.Google Scholar
Hollman, A. and Stier, J. 2002. Cold tolerance of tall fescue (Festuca arundinacea) as affected by maturity, endophyte, and cultivar. 2002 Wis. Turfgrass Res. Rep. 20 :4245.Google Scholar
Jagschitz, J. A. and Ebdon, J. S. 1985. Influence of mowing, fertilizer and herbicide on crabgrass infestation in red fescue turf. Pages 699704 in Lemaire, F., ed. Proceedings of the 5th International Turfgrass Research Conference. Paris : Institut National de la Recherche Agronomique.Google Scholar
Karcher, D. E. and Richardson, M. D. 2005. Batch analysis of digital images to evaluate turfgrass characteristics. Crop Sci. 45 :15361539.Google Scholar
Kussow, W. R., Combs, S. M., Sausen, A. J., and Soldat, D. J. 2011. Lawn Fertilization. Publication UWEX A2303. Madison, WI : University of Wisconsin Extension.Google Scholar
Turgeon, A. J. 2005. Turfgrass Management. 7th ed. Upper Saddle River, NJ : Pearson Prentice Hall.Google Scholar
Voigt, T. B., Fermanian, T. W., and Haley, J. E. 2001. Influence of mowing and nitrogen fertility on tall fescue turf. Int. Turfgrass Soc. Res. J. 9 :953956.Google Scholar
Watkins, E., Fei, S., Gardner, D., Stier, J., Bughrara, S., Li, D., Bigelow, C., Schliecher, L., Horgan, B., and Diesburg, K. 2011. Low-input turfgrass species for the north central United States. Applied Turfgrass Science DOI: .CrossRefGoogle Scholar
Woolhouse, A. R. 1976. Estimation of ground cover in turfgrass communities. J. Sports Turf Res. Inst. 52 :6476.Google Scholar