Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-09T03:18:12.632Z Has data issue: false hasContentIssue false

Evaluating the Volatility of Three Formulations of 2,4-D When Applied in the Field

Published online by Cambridge University Press:  20 January 2017

Lynn M. Sosnoskie*
Affiliation:
Department of Crop and Soil Sciences, University of Georgia, Tifton, GA 31794
A. Stanley Culpepper
Affiliation:
Department of Crop and Soil Sciences, University of Georgia, Tifton, GA 31794
L. Bo Braxton
Affiliation:
Dow AgroSciences, 1090 Jackson Grove Road, Travelers Rest, SC 29690
John S. Richburg
Affiliation:
Dow AgroSciences, Headland, AL 36345
*
Corresponding author's E-mail: lynn.sosnoskie@gmail.com.

Abstract

Cotton genetically engineered to be resistant to topical applications of 2,4-D could provide growers with an additional tool for managing difficult-to-control broadleaf species. However, the successful adoption of this technology will be dependent on the ability of growers to manage off-target herbicide movement. Field experiments were conducted in Moultrie, GA, to evaluate cotton injury resulting from the volatilization of 2,4-D when formulated as an ester, an amine, or a choline salt. Each formulation of 2,4-D (2.24 kg ha−1) was applied in mixture with glyphosate (2.24 kg ha−1) directly to the soil surface (10 to 20% crop residue) in individual square blocks (750 m2). Following herbicide applications, replicate sets of four potted cotton plants (five- to seven-leaf stage) were placed at distances ranging from 1.5 to 48 m from the edge of each treatment. Plants were allowed to remain in-field for up to 48 h before being removed. Cotton exposed to 2,4-D ester for 48 h exhibited maximum injury ratings of 63, 57, 48, 29, 13, and 2% at distances of 1.5, 3, 6, 12, 24, and 48 m, respectively. Less than 5% injury was noted for the amine and choline formulations at any distance. Plant height was also affected by formulation and distance; plants that were located closest to the ester-treated block were smaller than their more distantly-positioned counterparts. Exposure to the amine and choline formulations did not affect plant heights. Additionally, two plastic tunnels were placed inside of each treated block to concentrate volatiles and maximize the potential for crop injury. Injury ratings of 76, 13, and 5% were noted for cotton exposed to the ester, amine, and choline formulations, respectively when under tunnels for 48 h. Results indicate that the choline formulation of 2,4-D was less volatile and injurious to cotton than the ester under the field conditions in this study.

El algodón genéticamente diseñado para ser resistente a las aplicaciones tópicas de 2,4-D podría brindar a los productores una herramienta adicional para el manejo de especies de hoja ancha difíciles de controlar. Sin embargo, la adopción exitosa de esta tecnología dependerá de la habilidad de los productores de manejar el movimiento del herbicida a lugares no deseados. Se realizaron experimentos de campo en Moultrie, Georgia, para evaluar el daño en algodón resultante de la volatilización de 2,4-D cuando se formuló como ester, amine, o sal choline. Cada formulación de 2,4-D (2.24 kg ha−1) fue aplicada en mezcla con glyphosate (2.24 kg ha−1) directamente a la superficie del suelo (10 a 20% de residuos de cultivos) en parcelas cuadradas individuales (750 m2). Seguido de las aplicaciones del herbicida, grupos replicados de cuatro plantas de algodón en contenedores (en el estado de cinco a siete hojas) fueron colocados a distancias que variarían de 1.5 a 48 m del borde de cada tratamiento. Las plantas fueron mantenidas en el campo por períodos de hasta 48 h antes de ser removidas. El algodón expuesto a 2,4-D ester por 48 h mostró evaluaciones de daño máximas de 63, 57, 48, 29, 13, y 2% a distancias de 1.5, 3, 6, 12, 24, y 48 m, respectivamente. Para las formulaciones amine y choline, el daño notado fue menor a 5% en cualquiera de las distancias evaluadas. La altura de planta también fue afectada por la formulación y la distancia; las plantas que estaban más cerca de la parcela tratada con ester fueron más pequeñas que aquellas que estaban a mayor distancia. La exposición a las formulaciones amine y choline no afectó la altura de las plantas. Adicionalmente, se colocaron dos túneles de plástico dentro de cada parcela tratada para concentrar los compuestos volátiles y maximizar el potencial de daño del cultivo. Las evaluaciones de daño de 76, 13, y 5% fueron notadas para el algodón expuesto a las formulaciones ester, amine, y choline, respectivamente, bajo los túneles por 48 h. Los resultados indican que la formulación choline de 2,4-D fue menos volátil y menos dañina al algodón que la formulación ester bajo condiciones de campo en este estudio.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Baur, JR, Bovey, RW, McCall, HG (1973) Thermal and ultraviolet loss of herbicides. Arch Environ Contam Toxicol 1:289302 Google Scholar
Behrens, R, Lueschen, WE (1979) Dicamba volatility. Weed Sci 27:486493 Google Scholar
Burke, I, Wilcut, J (2004) Weed management in cotton with CGA-362622, fluometuron, and pyrithiobac. Weed Technol 18:268276 Google Scholar
Burnside, OC, Lavy, TL (1966) Dissipation of dicamba. Weeds 14:211214 Google Scholar
Coetzer, E, Al-Khalib, K, Peterson, DE (2002) Glufosinate efficacy on Amaranthus species in glufosinate-resistant soybeans (Glycine max). Weed Technol 16:326331 Google Scholar
Culpepper, AS, Webster, TM, Sosnoskie, LM, York, AC (2010) Glyphosate-resistant Palmer amaranth in the United States. Pages 195212 in Nandula, VK, ed. Glyphosate Resistance in Crops and Weeds—History, Development and Management. Hoboken, NJ: John Wiley and Sons Google Scholar
Egan, JF, Barlow, KM, Mortensen, DA (2014) A meta-analysis on the effects of 2,4-D and dicamba drift on soybean and cotton. Weed Sci 62:193206.Google Scholar
Egan, JF, Maxwell, BD, Mortensen, DA, Ryan, MR, Smith, RG (2011) 2,4-Dichlorophenoxyacetic acid (2,4-D) resistant crops and the potential for evolution of 2,4-D resistant weeds. Proc Natl Acad Sci U S A 108:E37 Google Scholar
Everitt, JD, Keeling, JW (2009) Cotton growth and yield response to simulated 2,4-D and dicamba drift. Weed Technol 23:503506 Google Scholar
Fagliari, JR, de Oliveira, RS Jr., Constantin, J (2005) Impact of sublethal does of,4–D, simulating drift, on tomato yield. J Environ Sci Health Part B: Pestic Food Contam Agric Wastes 40:201206 Google Scholar
Felsot, AS, Unsworth, JB, Linders, JB, Roberts, G, Rautman, D, Harris, C, Carazo, E (2010). Agrochemical spray drift; assessment and mitigation—a review. J Environ Sci Health Part B: Pestic Food Contam Agric Wastes 46:123 Google Scholar
Ferrell, JA, Witt, WW (2002) Comparison of glyphosate and other herbicides for weed control in corn (Zea mays): efficacy and economics. Weed Technol 16:701706 Google Scholar
Gilreath, JP, Chase, CA, Locascio, SJ (2001a) Crop injury from sublethal rates of herbicide. II. Cucumber. HortScience 36:674676 Google Scholar
Gilreath, JP, Chase, CA, Locascio, SJ (2001b) Crop injury from sublethal rates of herbicide. III. Pepper. HortScience 36:677681 Google Scholar
Grover, R (1976) Relative volatility of ester and amine forms of 2,4–D. Weed Sci 24:2628 Google Scholar
Heap, IM (2014) International Survey of Herbicide Resistant Weeds. www.weedscience.org. Accessed January 25, 2014Google Scholar
Hemphill, DD Jr., Montgomery, ML (1981) Response of vegetable crops to sublethal applications of 2,4–D. Weed Sci 29:632635 Google Scholar
Johnson, VA, Fisher, LA, Jordan, DL, Edmisten, KE, Stewart, AM, York, AC (2012) Cotton, peanut and soybean response to sublethal rates of dicamba, glufosinate, and 2,4-D. Weed Technol 26:195206 Google Scholar
Lancaster, SH, Jordan, DL, Spears, JF, York, AC, Wilcut, JW, Monks, DW, Batts, RB, Brandenburg, RL (2005) Sicklepod (Senna obtusifolia) control and seed production after 2,4-DB applied alone and with fungicides and insecticides. Weed Technol 19:451455 Google Scholar
Marple, ME, Al-Khatib, K, Peterson, DE (2008) Cotton injury and yields as affected by simulated drift of 2,4-D and dicamba. Weed Technol 22:609614 Google Scholar
Marple, ME, Al-Khatib, K, Shoup, D, Peterson, DE, Claassen, M (2007) Cotton response to simulated drift of seven hormonal-type herbicides. Weed Technol 21:987992 Google Scholar
Marth, PC, Mitchell, JW (1949) Comparative volatility of various forms of 2,4–D. Bot Gaz 110:632636 Google Scholar
Norsworthy, JK, Griffith, GM, Scott, RC, Smith, KL, Oliver, LR (2008) Confirmation and control of glyphosate-resistant Palmer amaranth (Amaranthus palmeri) in Arkansas. Weed Technol 22:108113 Google Scholar
Peterson, GE (1967) The discovery and development of 2,4–D. Agric Hist 41:243254 Google Scholar
Que Hee SS, Sutherland RG (1974) Volatilization of various esters and salts of 2,4–D. Weed Sci 22:313318 Google Scholar
Richburg, JS, Wright, TR, Braxton, LB, Robinson, AE, inventors; Dow Agrosciences, assignee. 12. July 2012. Increased tolerance of DHT-enabled plants to auxinic herbicides resulting from MOIETY differences in auxinic molecule structures. U.S. patent 13,345,236Google Scholar
Robinson, AP, Davis, VM, Simpson, DM, Johnson, WG (2013) Response of soybean yield components to 2,4–D. Weed Sci 61:6876 Google Scholar
Sciumbato, AS, Chandler, JM, Senseman, SA, Bovey, RW, Smith, KL (2004a) Determining exposure to auxin-like herbicides. I. Quantifying injury to cotton and soybean. Weed Technol 18:11251134 Google Scholar
Sciumbato, AS, Chandler, JM, Senseman, SA, Bovey, RW, Smith, KL (2004b) Determining exposure to auxin-like herbicides. II. Practical application to quantify volatility. Weed Technol 18:11351142 Google Scholar
Sosnoskie, LM, Culpepper, AS (2014) Glyphosate-resistant Palmer amaranth (Amaranthus palmeri) increases herbicide use, tillage, and handweeding in Georgia cotton. Weed Sci 62:393402 Google Scholar
Sosnoskie, LM, Kichler, JM, Wallace, RD, Culpepper, AS (2011) Multiple resistance in Palmer amaranth to glyphosate and pyrithiobac confirmed in Georgia. Weed Sci 59:321325 Google Scholar
Strachan, SD, Casini, MS, Heldreth, KM, Scocas, JA, Nissen, SJ, Bukun, B, Lindenmayer, RB, Shaner, DL, Westra, P, Brunk, G (2010) Vapor movement of synthetic auxin herbicides: aminocyclopyrachlor, aminocyclopyrachlor-methyl ester, dicamba, and aminopyralid. Weed Sci 58:103108 Google Scholar
Wise, AM, Grey, TL, Prostko, EP, Vencill, WK, Webster, TM (2009) Establishing the geographic distribution level of acetolactate synthase resistance of Palmer amaranth (Amaranthus palmeri) accessions in Georgia. Weed Technol 23:214220 Google Scholar
Wright, TR, Shan, G, Walsh, TA, Lira, JM, Cui, C, Song, P, Zhuang, M, Arnold, NL, Lin, G, Yau, K, Russell, SM, Cicchillo, RM, Peterson, MA, Simpson, DM, Zhou, N, Ponsamuel, J, Zhang, Z (2010) Robust crop resistance to broadleaf and grass herbicides provided by aryloxyalkanoate dioxygenase transgenes. Proc Natl Acad Sci U S A 107:2024020245 Google Scholar
Zimmerman, PW, Hitchcock, AE, Kirkpatrick, H (1953) Methods for determining relative volatility of esters of 2,4-D and other growth regulants based on response of tomato plants. Weeds 2:254261 Google Scholar