Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-29T05:39:05.932Z Has data issue: false hasContentIssue false

Effect of Turnip Soil Amendment and Yellow Nutsedge (Cyperus esculentus) Tuber Densities on Interference in Polyethylene-Mulched Tomato

Published online by Cambridge University Press:  20 January 2017

Sanjeev K. Bangarwa
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704
Jason K. Norsworthy*
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704
Edward E. Gbur
Affiliation:
Statistics and Interim Laboratory Director, Agricultural Statistics Laboratory, University of Arkansas, 101 Agricultural Annex Building, Fayetteville, AR 72701
*
Corresponding author's E-mail: jnorswor@uark.edu

Abstract

Yellow nutsedge is a problematic weed in polyethylene-mulched tomato production. Soil fumigation with methyl bromide is the most effective method of controlling nutsedges, but because of ozone depletion, the phase-out of methyl bromide has complicated nutsedge control in polyethylene-mulched tomato and other vegetable crops. Plants belonging to the Brassicaceae family produce glucosinolates, which upon tissue decomposition generate biocidal isothiocyanates and therefore can be used as a biological alternative for yellow nutsedge control. Field experiments were conducted in 2007 and 2009 to study the influence of soil amendment with ‘Seventop’ turnip cover crop on the interference of yellow nutsedge planted at 0, 50, and 100 tubers m−2 in raised-bed polyethylene-mulched tomato production. There was no advantage of soil amendment with Seventop on reducing yellow nutsedge interference in polyethylene-mulched tomato. Regardless of soil amendment, increasing initial tuber density from 50 to 100 tubers m−2 increased yellow nutsedge shoot density, shoot dry weight, and tuber production at least 1.7, 1.6, and 1.6 times, respectively. As a result, tomato canopy width, shoot dry weight, and marketable yield decreased with increasing initial tuber densities. However, increased tuber density had minimal impact on tomato height. Relative to weed-free plots, interference of yellow nutsedge at 50 and 100 tubers m−2 reduced marketable yield of tomato up to 32 and 49%, respectively. Shading of the middle and lower portion of tomato plants by yellow nutsedge shoots could be the major factor for reducing tomato growth and yield in weedy plots. It is concluded that soil amendment with Seventop turnip is not a viable option for reducing yellow nutsedge interference at 50 and 100 tuber m−2 in polyethylene-mulched tomato.

Cyperus esculentus es una maleza problemática en la producción de tomate con mantillo de polietileno. La fumigación del suelo con bromuro de metilo es el método más efectivo para controlar este tipo de maleza, pero debido a la reducción de la capa de ozono, la eliminación progresiva del bromuro de metilo ha complicado el control de Cyperusen el cultivo de tomatey otras hortalizas cultivadas con mantillo de polietileno. Las plantas que pertenecen a la familia brassicaceae producen glucosinolatos, los cuales con la descomposición del tejido generanisotiocianatosbiocidas (ITCs) y por lo tanto, pueden ser usados como una alternativa biológica para el control de C. esculentus. En 2007 y 2009 se realizaron experimentos de campo para estudiar la influencia de la modificación del suelo con nabo ‘Seventop’ como cultivo de cobertera, sobre la interferencia de C. esculentus sembrado a 0, 50, y 100 tubérculos m-2 en el cultivo de tomate en camas elevadas con mantillo de polietileno. No hubo ninguna ventaja de la modificación del suelo con nabo ‘Seventop’, en cuanto a reducir la interferencia de C. esculentus en el cultivo de tomate con mantillo de polietileno. Sin importar la modificación del suelo, incrementarla densidad inicial de tubérculos de 50 a 100 m2 aumentó la densidad de los brotes, el peso seco de los mismosy la producción de tubérculos de C. esculentus al menos 1.7, 1.6 y 1.6 veces, respectivamente. Como resultado, el ancho del follaje del tomate, el peso seco delos brotes y el rendimiento comercial disminuyeron con el incremento de las densidades iniciales de los tubérculos. Sin embargo, el aumento en la densidad de los tubérculos tuvo un mínimo impacto en la altura del tomate. Relativoa las parcelas libres de maleza, la interferencia de C. esculentus a 50 y 100 tubérculos m2 disminuyó el rendimiento comercial del tomate hasta 32 y 49%, respectivamente. La sombra que los brotes de C. esculentus dan a la parte media y baja de las plantas de tomate puede ser el factor principal en la reducción del crecimiento y rendimiento del tomate en parcelas enmalezadas. Se concluye que suelo modificado con nabo ‘Seventop’ no es una opción viable para reducir la interferencia de C. esculentusa 50 y 100 tubérculos m2 en cultivo de tomate con mantillo de polietileno.

Type
Weed Biology and Competition
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Al-Khatib, K., Libbey, C., and Boydston, R. A. 1997. Weed suppression with Brassica green manure crops in green pea. Weed Sci. 45:439445.Google Scholar
Anderson, W. P. 1999. Perennial Weeds: Characteristics and Identification of Selected Herbaceous Species. 1st ed. Ames, IA Iowa State University Press, 228 p.Google Scholar
Anonymous, . 2011. Vapam HL product label. Los Angeles, CA AMVAC Chemical Corp.Google Scholar
Ballare, C. L. and Casal, J. J. 2000. Light signals perceived by crop and weed plants. Field Crops Res. 67:149160.CrossRefGoogle Scholar
Ballare, C. L., Sanchez, R. A., Scopel, A. L. and Ghesra, C. M. 1988. Morphological responses of Datura ferox seedlings to the presence of neighbors. Their relationship with canopy microclimate. Oecologia 76:228293.Google Scholar
Bangarwa, S. K., Norsworthy, J. K., Mattice, J. D., and Gbur, E. E. 2011. Yellow nutsedge interference in polyethylene-mulched bell pepper as influenced by turnip soil amendment. Weed Technol. DOI: 10.1614WT-D-10-00120.1Google Scholar
Bangarwa, S. K., Norsworthy, J. K., Rainey, R. L., and Gbur, E. E. 2010. Economic returns in plasticulture tomato production from crucifer cover crops as a methyl bromide alternative for weed management. HortTechnology 20:764771.Google Scholar
Bhowmik, P. C. and Reddy, K. N. 1988. Interference of common lambsquarters (Chenopodium album) in transplanted tomato (Lycopersicon esculentum). Weed Technol. 2:505508.Google Scholar
Boydston, R. A. and Hang, A. 1995. Rapeseed (Brassica napus) green manure crop suppresses weeds in potato (Solanum tuberosum). Weed Technol. 9:669675.CrossRefGoogle Scholar
Brown, P. D., Morra, M. J., McCaffrey, J. P., Auld, D. L., and Williams, L. 1991. Allelochemical produced during glucosinolate degradation in soil. J. Chem. Ecol. 17:20212034.Google Scholar
Campbell, C. R. 1992. Determination of total nitrogen in plant tissue by combustion. Pp. 2022. In Plank, C. O., ed. Plant Analysis Reference Procedures for the Southern U. S. Athens, GA University of Georgia.Google Scholar
Caracciolo, A. B., Giuliano, G., Grenni, P., Guzzella, L., Pozzoni, F., Bottoni, P., Faya, L., Crobe, A., Orru, M., and Funari, E. 2005. Degradation and leaching of the herbicides metolachlor and diuron; a case study in an area of Northern Italy. Crop Prot. 134:525534.Google Scholar
Chase, C. A., Sinclair, T. R., Shilling, D. G., Gilreath, J. P., and Locascio, S. J. 1998. Light effects on rhizome morphogenesis in nutsedges (Cyperus spp.): implications for control by soil solarization. Weed Sci. 46:575580.Google Scholar
Donald, W. W. 2000. Between-row mowing + in-row band-applied herbicides for weed control in Glycine max . Weed Sci. 48:487500.Google Scholar
Duniway, J. M. 2002. Status of chemical alternatives of methyl bromide for pre-plant fumigation in soil. Phytopathology 92:13371343.Google Scholar
Fennimore, S. A. and Doohan, D. J. 2008. The challenges of specialty crop weed control, future directions. Weed Technol. 22:364372.Google Scholar
Gimsing, A. L. and Kirkegaard, J. A. 2006. Glucosinolate and isothiocyanate concentration in soil following incorporation of Brassica biofumigants. Soil Biol. Biochem. 38:22552264.Google Scholar
Gimsing, A. L. and Kirkegaard, J. A. 2009. Glucosinolates and biofumigation: fate of glucosinolates and their hydrolysis products in soil. Phytochem. Rev. 8:299310.Google Scholar
Holm, L. G., Plucknett, D. L., Pancho, J. V., and Herberger, J. P. 1977. The World's Worst Weeds. Distribution and Biology. Honolulu, HI University Press of Hawaii. 609 p.Google Scholar
Holmes, G. J. and Kemble, J. M., eds. 2010. Vegetable Crop Handbook for the Southeastern United States. 11th ed. Lincolnshire, IL Vance. 290 p.Google Scholar
Jones, J. B. and Case, V. W. 1990. Sampling, handling, and analyzing plant tissue samples. Pp. 389428. In Westerman, R. L., ed. Soil Testing and Plant Analysis. 3rd ed. Madison, WI Soil Science Society of America.Google Scholar
Liu, J. G., Mahoney, K. J., Sikkema, P. H., and Swanton, C. J. 2009. The importance of light quality in crop–weed competition. Weed Res. 49:217224.CrossRefGoogle Scholar
McAvoy, R. J. and Janes, H. W. 1989. Tomato plant photosynthetic activity as related to canopy age and tomato development. J. Am. Soc. Hortic. Sci. 117:478482.Google Scholar
McGiffen, M. E., Masiunas, J. B., and Hesketh, J. D. 1992. Competition for light between tomatoes and nightshades (Solanum nigrum or S. ptycanthum). Weed Sci. 40:220226.Google Scholar
Morales-Payan, J. P. 1999. Interference of purple and yellow nutsedge (Cyperus rotundus L. and Cyperus esculentus L.) with tomato (Lycopersicon esculentum Mill.). Ph.D dissertation. Gainesville, FL: University of Florida. 315 p.Google Scholar
Morales-Payan, J. P., Santos, B. M., and Stall, W. M. 1997. Effect of increasing purple nutsedge densities (Cyperus rotundus) on cilantro (Coriandrum sativum) yield. Proc. Fla. State Hortic. Soc. 110:318320.Google Scholar
Morales-Payan, J. P., Stall, W. M., Shilling, D. G., Charudattan, R., Dusky, J. A., and Bewick, T. A. 2003a. Above- and belowground interference of purple and yellow nutsedge (Cyperus spp.) with tomato. Weed Sci. 51:181185.Google Scholar
Morales-Payan, J. P., Stall, W. M., Shilling, D. G., Dusky, J. A., Bewick, T. A., and Charudattan, R. 2003b. Initial weed-free period and subsequent yellow nutsedge population density affect tomato yield. Proc. Fla. State. Hortic. Soc. 116:7375.Google Scholar
Munter, R. C. and Grande, R. A. 1981. Plant analysis and soil extract by ICP-atomic emission spectrometry. Pp. 653672. In Branes, R. M., ed. Developments in Atomic Plasma Spectrochemical Analysis. London Heyden and Son.Google Scholar
Norsworthy, J. K. 2003. Allelopathic potential of wild radish (Raphanus raphanistrum). Weed Technol. 17:307313.CrossRefGoogle Scholar
Norsworthy, J. K., Malik, M. S., Jha, P., and Riley, M. B. 2007. Suppression of Digitaria sanguinalis and Amaranthus palmeri using autumn-sown glucosinolate-producing cover crops in organically grown bell pepper. Weed Res. 47:425432.Google Scholar
Norsworthy, J. K. and Meehan, J. T. 2005. Wild radish–amended soil effects on yellow nutsedge (Cyperus esculentus) interference with tomato and tomato. Weed Sci. 53:7783.Google Scholar
Olson, S. M., Stall, W. M., Vallad, G. E., Webb, S. E., Smith, S. A., Simonne, E. H., McAvoy, E. J., and Santos, B. M. 2010. Tomato production in Florida. Pp. 298300. In Olson, S. M. and Santos, B. M., eds. Vegetable Production Handbook for Florida 2010–2011. Gainesville, FL University of Florida.Google Scholar
Patterson, D. T. 1998. Suppression of purple nutsedge (Cyperus rotundus) with polyethylene film mulch. Weed Technol. 12:275280.Google Scholar
Petersen, J., Belz, R., Walker, F., and Hurle, K. 2001. Weed suppression by release of isothiocyanates from turnip–rape mulch. Agron. J. 93:3743.Google Scholar
Pereira, W., Crabtree, G., and William, R. D. 1987. Herbicide action on purple and yellow nutsedge (Cyperus rotundus and C. esculentus). Weed Technol. 1:9298.Google Scholar
Rajcan, I. and Swanton, C. J. 2001. Understanding maize–weed competition: resource competition, light quality, and the whole plant. Field Crop Res. 71:139150.Google Scholar
Sarwar, M. and Kirkegaard, J. A. 1998. Biofumigation potential of brassicas. II—effect of environment and ontogeny on glucosinolate production and implications for screening. Plant Soil 201:91101.Google Scholar
Scherer, T. F., Seelig, B., and Franzen, D. 1996. Soil, water, and plant characteristics important to irrigation. http://www.ag.ndsu.edu/pubs/ageng/irrigate/eb66w.htm. Accessed: July 5, 2010.Google Scholar
Smelt, J. H., Crum, S.J.H., and Teunissen, W. H. 1989. Accelerated transformation of the fumigant methyl isothiocyanate in soil after repeated applications of metam sodium. J. Environ. Sci. Health. 24:437455.Google Scholar
Sondhia, S. 2008. Leaching behavior of metsulfuron in two texturally different soils. Environ. Monit. Assess. DOI: 10.1007/s10661-008-0381-8Google Scholar
Stoller, E. W. and Sweet, R. D. 1987. Biology and life cycle of purple and yellow nutsedge (Cyperus rotundus and C. esculentus). Weed Technol. 1:6673.Google Scholar
[USDA] U.S. Department of Agriculture. 1997. United States standards for grades of fresh tomatoes. http://www.ams.usda.gov/AMSv1.0/getfile?dDocName=STELPRDC5050331. Accessed: March 11, 2010.Google Scholar
USDA. 2011. Vegetables 2010 Summary. http://usda.mannlib.cornell.edu/usda/current/VegeSumm/VegeSumm-01-27-2011.pdf. Accessed: June 18, 2011.Google Scholar
[USEPA] U.S. Environmental Protection Agency. 2008. Ozone Layer Depletion—Regulatory Programs: The Phaseout of Methyl Bromide Montreal Protocol. http://www.epa.gov/ozone/mbr/index.html. Accessed: September 15, 2008.Google Scholar
Webster, T. M. 2006. Weed survey—southern states: vegetable, fruit and nut crops subsection. Proc. South. Weed Sci. Soc. 59:260277.Google Scholar
William, R. D. and Warren, G. F. 1975. Competition between purple nutsedge and vegetables. Weed Sci. 23:317323.Google Scholar
Young, F. L., Wyse, D. L., and Jones, R. J. 1983. Effect of irrigation on quackgrass (Agropyron repens) interference in soybeans (Glycine max). Weed Sci. 31:720727.Google Scholar