Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T07:38:48.468Z Has data issue: false hasContentIssue false

Detection of Phytotoxic Soil Residues of Hexazinone and Simazine by a Biological Test Using Lepidium sativum L. var. Cresson

Published online by Cambridge University Press:  20 January 2017

Marta Ortega
Affiliation:
Departamento de Selvicultura, CIFOR-INIA, Carretera de la Coruña km. 7.5, 28040 Madrid, Spain
José L. Alonso-Prados
Affiliation:
Department, Departamento de Protección Vegetal, INIA, Carretera de la Coruña km. 7.5, 28040 Madrid, Spain
Mercedes Villarroya
Affiliation:
Department, Departamento de Protección Vegetal, INIA, Carretera de la Coruña km. 7.5, 28040 Madrid, Spain
José M. García-Baudín*
Affiliation:
Department, Departamento de Protección Vegetal, INIA, Carretera de la Coruña km. 7.5, 28040 Madrid, Spain
*
Corresponding author's E-mail: baudin@inia.es

Abstract

Current plant bioassays included in the guidelines for testing pesticides do not include the measurement of reproduction endpoints. A bioassay, based on reduction of flowering of cress was developed to detect soil residues of hexazinone and simazine at levels of 0.02 and 0.10 ppm, respectively. The endpoint used in the described bioassay is the percentage of plant viability that implies that the tested plants have reached the flowering stage. It was found that sensitivity of cress is lower in soils containing higher organic matter.

Type
Research
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous. 1991. Council Directive 91/414/EEC of 15 July 1991. Concerning Placing of Plant Protection Products on the Market. Official Journal of the European Community L230. 19 August 1991. Pp. 132.Google Scholar
Anonymous. 2000. Guidance Document on Residue Analytical Methods. Web page: http://europa.eu.int/comm/foodplant/protection/resources/ guide_doc_825-00_rev7en.pdf. Accessed: September 1, 2004.Google Scholar
Bessis, M. C. and Olivain, C. 1974. A test for biologically active concentration of an herbicide. C.R. Acad. Agric. Fr 60:896905.Google Scholar
Bouchet, F. and Dagneaud, J. P. 1974. Description of a bioassay technique for simazine in soil. Weed Res 14:145149.Google Scholar
Davy, M., Petrie, R., Smrchek, J., Kuchnicki, T., and Francois, D. 2001. Scientific Advisory Panel Brief (June 27–29, 2001). Proposal to Update Non-target Plant Toxicity Testing under NAFTA. Web page: http:// www.epa.gov/scipoly/sap/2001/june/sap14.pdf. Accessed: September 1, 2004.Google Scholar
Goh, K. S., Richman, S. J., and Troiano, J. et al. 1992. ELISA of simazine in soil: applications for field leaching study. Bull. Environ. Contam. Toxicol 48:554560.CrossRefGoogle ScholarPubMed
Hollaway, K. L., Kookana, R. S., McQuinn, D. J., Moerkerk, M. R., Noy, D. M., and Smal, M. A. 1999. Comparison of sulfonylurea herbicide residue detection in soil by bioassay enzyme-linked immunosorbent assay and HPLC. Weed Res 39:383397.CrossRefGoogle Scholar
Horowitz, M. 1976. Application of bioassay techniques to herbicide investigations. Weed Res 16:209215.Google Scholar
Jensen, K. I. N. and Kimball, E. R. 1982. The comparative behaviour of simazine and terbacil in soils. Weed Res 22:712.CrossRefGoogle Scholar
Lydon, J., Engelke, B. F., and Helling, C. S. 1991. Simplified high-performance liquid chromatography method for the simultaneous analysis of tebuthiuron and hexazinone. J. Chromatogr 536:223228.Google Scholar
Pestemer, W., Stalder, L., and Eckert, B. 1980. Availability to plants of herbicide residues in soil. Part II: data for use in vegetable crop rotations. Weed Res 20:349353.Google Scholar
Prasad, R. and Feng, J. C. 1990. Spotgun-Applied hexazinone: release of Red pine (Pinus resinosa) from Quaking Aspen (Populus tremuloides) competition and residue persistence in soil. Weed Technol. 4:371375.CrossRefGoogle Scholar
Rahman, A., James, T. K., and Gunter, P. 1993. Bioassays of soil applied herbicides. Proc. Int. Symp. Indian Soc. Weed Sci 1:95106.Google Scholar
Shimabuku, R. A., Ratsch, H. C., Wise, C. M., Nwosu, J. U., and Kapustka, L. A. 1991. A new plant life cycle bioassay for assessment of the effects of toxic chemicals using rapid cycling brassica. in Gorsuch, J. W., Lower, W. R., Wang, W., and Lewis, M. A., eds. Plants for Toxicity Assessment: Second Volume, ASTM STP 1115. Philadelphia, PA: American Society for Testing and Materials. Pp. 365375.Google Scholar
Stalder, L. and Pestemer, W. 1980. Availability to plants of herbicide residues in soil. Part I: a rapid method for estimating potentially available residues of herbicides. Weed Res 20:341347.CrossRefGoogle Scholar
Statgraphics Plus for Windows. 1998. Standard Edition. User Manual. Version 4. Rockville, MD: Manugistics. 683 p.Google Scholar
Stork, P. R. 1998. Bioefficacy and leaching of controlled-release formulations of triazine herbicides. Weed Res 38:433441.Google Scholar
Streibig, J. C. 1980. Models for curve-fitting herbicide dose response data. Acta Agric. Scand 30:5964.Google Scholar
Sung, S. S., South, D. B., and Gjerstad, D. H. 1985. Bioassay indicates a metabolite of hexazinone affects photosynthesis of loblolly pine (Pinus taeda). Weed Sci. 33:440442.Google Scholar
Wood, J. E., Scarratt, J. B., and Stephenson, G. R. 1993. Hexazinone toxicity in red pine and jack pine. Can. J. For. Res 23:22302235.Google Scholar