Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-21T02:24:12.812Z Has data issue: false hasContentIssue false

Combinations of Sethoxydim with Postemergence Broadleaf Herbicides in Sethoxydim-Resistant Corn (Zea mays)

Published online by Cambridge University Press:  20 January 2017

Mark A. Isaacs
Affiliation:
Eastern Shore Agricultural Research and Extension Center, Virginia Polytechnic Institute and State University, Painter, VA 23340-2827
Henry P. Wilson*
Affiliation:
Eastern Shore Agricultural Research and Extension Center, Virginia Polytechnic Institute and State University, Painter, VA 23340-2827
Joe E. Toler
Affiliation:
Department of Experimental Statistics, Clemson University, Clemson, SC 29634-0379
*
Corresponding author's E-mail: hwilson@vt.edu

Abstract

Field studies were conducted in 1995 and 1996 to investigate postemergence tank mixtures of sethoxydim with various acetolactate synthase (ALS)- and non–ALS-inhibitor herbicides for weed control in sethoxydim-resistant (SR) corn. Giant foxtail control with sethoxydim was 96% and was equal to control with tank mixtures of sethoxydim plus bentazon, dicamba, dicamba plus atrazine, bromoxynil, and nicosulfuron plus bromoxynil. Giant foxtail control with sethoxydim plus atrazine, sethoxydim plus bentazon plus atrazine, and sethoxydim plus ALS-inhibiting herbicides plus 2,4-D was reduced to 60 to 89%. Common ragweed control was equal to or above 91% for tank mixtures that included bentazon plus atrazine, dicamba, dicamba plus atrazine, halosulfuron plus 2,4-D, and CGA 152005 plus primisulfuron plus 2,4-D, and the tank mixture of nicosulfuron plus bromoxynil. Common lambsquarters control was equal to or above 91% from all broadleaf herbicide treatments except bentazon and the tank mixture of halosulfuron plus 2,4-D. In these studies, only tank mixtures of sethoxydim plus dicamba or dicamba plus atrazine controlled giant foxtail, common ragweed, and common lambsquarters equal to or greater than 91% in SR corn.

Type
Research
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Barbour, J. C. and Forcella, F. 1993. Predicting seed production by foxtails (Setaria spp.). Proc. N. Cent. Weed Sci. Soc. 48: 100.Google Scholar
Beckett, T. H., Stoller, E. W., and Wax, L. M. 1988. Interference of four annual weeds in corn (Zea mays). Weed Sci. 36: 764769.Google Scholar
Campbell, J. R. and Penner, D. 1982. Compatibility of diclofop and BAS 9052 with bentazon. Weed Sci. 30: 458462.Google Scholar
Chu, C., Sweet, R. D., and Ozbun, J. L. 1978. Some germination characteristics in common lambsquarters. Weed Sci. 26: 255258.Google Scholar
Corkern, C. B., Jordan, D. L., Griffin, J. L., Vidrine, P. R., Williams, B. J., and Reynolds, D. B. 1999. Influence of adjuvants on interactions of sethoxydim with selected broadleaf herbicides used in corn (Zea mays). Weed Technol. 13: 821824.Google Scholar
Corkern, C. B., Reynolds, D. B., Vidrine, P. R., Griffin, J. L., and Jordan, D. L. 1998. Bromoxynil antagonizes johnsongrass (Sorghum halepense) control with graminicides. Weed Technol. 12: 205208.Google Scholar
Darmency, H. 1994. Genetics of herbicide resistance in weed and crops. In Powles, S. B. and Holtum, J. A., eds. Herbicide Resistance in Plants: Biology and Biochemistry. Boca Raton, FL: CRC. pp. 265277.Google Scholar
Dotray, P. A., Marshall, L. C., Parker, W. B., Wyse, D. L., Somers, D. A., and Gengenback, B. G. 1993. Herbicide tolerance and weed control in sethoxydim-tolerant corn (Zea mays). Weed Sci. 41: 213217.Google Scholar
Fausey, J. C., Kells, J. J., Swinton, S. M., and Renner, K. A. 1997. Giant foxtail (Setaria faberi) interference in nonirrigated corn (Zea mays). Weed Sci. 45: 256260.CrossRefGoogle Scholar
Grichar, W. J. 1991. Sethoxydim and broadleaf herbicide interactions effects on annual grass control in peanuts (Arachis hypogaea). Weed Technol. 5: 321324.Google Scholar
Hagood, E. S., Swann, C. W., Wilson, H. P., Ritter, R. L., Majek, B. A., and Curran, W. S. 1995. Pest Management Guide: Field Crops. Grain Crops, Soybeans, and Forages. Virginia Cooperative Extension Publication No. 456-016. pp. 214337.Google Scholar
Hall, M. R., Swanton, C. J., and Anderson, G. W. 1992. The critical period of weed control in grain corn (Zea mays). Weed Sci. 40: 441447.Google Scholar
Hart, S. E. and Penner, D. 1993. Atrazine reduces primisulfuron transport to meristems of giant foxtail (Setaria faberi) and velvetleaf (Abutilon theophrasti). Weed Sci. 41: 2833.Google Scholar
Hart, S. E. and Wax, L. M. 1996. Dicamba antagonizes grass weed control with imazethapyr by reducing foliar absorption. Weed Technol. 10: 828834.Google Scholar
Hatzios, K. K. and Penner, D. 1985. Interactions of herbicides with other agrochemicals in higher plants. Rev. Weed Sci. 1: 163.Google Scholar
Holshouser, D. L. and Coble, H. D. 1990. Compatibility of sethoxydim with five postemergence broadleaf herbicides. Weed Technol. 4: 128133.Google Scholar
Hsu, J. C. 1984. Constrained simultaneous confidence intervals for multiple comparison with the best. Ann. Stat. 12: 11361144.Google Scholar
Isaacs, M. A., Wilson, H. P., and Toler, J. E. 2002. Rimsulfuron plus thifensulfuron combinations with selected postemergence broadleaf herbicides in corn (Zea mays). Weed Technol. 16: 664668.Google Scholar
Jordan, D. L. 1995. Influence of adjuvants on the antagonism of graminicides by broadleaf herbicides. Weed Technol. 9: 741747.Google Scholar
Jordan, D. L., Smith, M. C., McClelland, M. R., and Frans, R. C. 1993. Weed control with bromoxynil applied alone and with graminicides. Weed Technol. 7: 835839.Google Scholar
Jordan, D. L. and York, A. C. 1989. Effects of ammonium fertilizers and BCH 81508S on antagonism with sethoxydim plus bentazon mixtures. Weed Technol. 3: 450454.Google Scholar
Knake, E. L. and Slife, F. W. 1962. Competition of Setaria faberi with corn and soybeans. Weeds 10: 2629.Google Scholar
Lambert, W. J., Bauman, T. T., White, M. D., and Vidal, R. A. 1994. Giant foxtail (Setaria faberi) interference in corn (Zea mays). Proc. N. Cent. Weed Sci. Soc. 49: 137138.Google Scholar
Marshall, L. C., Somers, D. A., Dotray, P. A., Gengenback, B. G., Wyse, D. L., and Gronwald, J. W. 1992. Allelic mutations in acetyl-coenzyme A carboxylase confer herbicide tolerance in maize. Theor. Appl. Genet. 83: 435442.Google Scholar
Mester, T. C. and Buhler, D. D. 1986. Effects of tillage on the depth of giant foxtail germination and population densities. Proc. N. Cent. Weed Sci. Soc. 41: 45.Google Scholar
Mueller, T. C., Witt, W. W., and Barrett, M. 1989. Antagonism of johnsongrass (Sorghum halepense) control with fenoxaprop, haloxyfop, and sethoxydim by 2,4-D. Weed Technol. 3: 8689.Google Scholar
Parker, W. B., Marshall, L. C., Burton, J. D., Somers, D. A., Wyse, D. L., Gronwald, J. W., and Gengenback, B. G. 1990. Dominant mutations causing alterations in acetyl-coenzyme A carboxylase confer tolerance to cyclohexanedione and aryloxyphenoxypropionate herbicides in maize. Proc. Natl. Acad. Sci. USA 87: 71757179.Google Scholar
VanGessel, M. J., Johnson, Q., and Isaacs, M. 1997. Response of sethoxydim-resistant corn (Zea mays) hybrids to postemergence graminicides. Weed Technol. 11: 598601.Google Scholar
Wanamarta, G. D., Penner, D., and Kells, J. J. 1989. The basis of bentazon antagonism on sethoxydim absorption and activity. Weed Sci. 37: 400404.Google Scholar
Webster, T. M. 2000. Weed survey—southern states—corn. Proc. South. Weed Sci. Soc. 53: 252.Google Scholar
Young, B. G. and Hart, S. E. 1997. Giant foxtail (Setaria faberi) control in sethoxydim-resistant corn (Zea mays). Weed Sci. 45: 771776.Google Scholar
Young, B. G., Hart, S. E., and Wax, L. M. 1996. Interactions of sethoxydim and corn (Zea mays) postemergence broadleaf herbicides on three annual grasses. Weed Technol. 10: 914922.Google Scholar