Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-24T21:08:48.780Z Has data issue: false hasContentIssue false

Characterization of a waterhemp (Amaranthus tuberculatus) population from Illinois resistant to herbicides from five site-of-action groups

Published online by Cambridge University Press:  23 May 2019

Cody M. Evans
Affiliation:
Graduate Research Assistant, Department of Crop Sciences, University of Illinois, Urbana, IL, USA
Seth A. Strom
Affiliation:
Graduate Research Assistant, Department of Crop Sciences, University of Illinois, Urbana, IL, USA
Dean E. Riechers
Affiliation:
Professor, Department of Crop Sciences, University of Illinois, Urbana, IL, USA
Adam S. Davis
Affiliation:
Professor, Department of Crop Sciences, University of Illinois, Urbana, IL, USA
Patrick J. Tranel
Affiliation:
Professor, Department of Crop Sciences, University of Illinois, Urbana, IL, USA
Aaron G. Hager*
Affiliation:
Associate Professor, Department of Crop Sciences, University of Illinois, Urbana, IL, USA
*
Author for correspondence: Aaron G. Hager, University of Illinois at Urbana-Champaign, Turner Hall, 1102 South Goodwin Avenue, Urbana, IL 61801, Email: hager@illinois.edu

Abstract

Experiments were initiated to characterize a waterhemp population (CHR) discovered in a central Illinois corn field after it was not controlled by the 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor topramezone. Field experiments conducted during 2014–2015 indicated that acetolactate synthase (ALS)-, protoporphyrinogen oxidase (PPO)-, photosystem II (PSII)-, and HPPD-inhibiting herbicides and the synthetic auxin 2,4-D did not control the CHR population. Laboratory experiments confirmed target site–based resistance mechanisms to ALS- and PPO-inhibiting herbicides. Herbicide doses required to reduce dry biomass 50% (GR50) were determined in greenhouse dose–response experiments, and indicated 16-fold resistance to the HPPD inhibitor mesotrione, 9.5-fold resistance to the synthetic auxin 2,4-D, and 252-fold resistance to the PSII inhibitor atrazine. Complementary results from field, laboratory, and greenhouse investigations indicate that the CHR population has evolved resistance to herbicides from five sites of action (SOAs): ALS-, PPO-, PSII-, and HPPD-inhibiting herbicides and 2,4-D. Herbicide use history for the field in which CHR was discovered indicates no previous use of 2,4-D.

Type
Research Article
Copyright
© Weed Science Society of America, 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, DD, Roeth, FW, Martin, AR (1996) Occurrence and control of triazine-resistant common waterhemp (Amaranthus rudis) in field corn (Zea mays). Weed Technol 10:570575 CrossRefGoogle Scholar
Beckie, HJ, Tardif, FJ (2012) Herbicide cross resistance in weeds. Crop Prot 35:1528 CrossRefGoogle Scholar
Bell, MS, Hager, AG, Tranel, PJ (2013) Multiple resistance to herbicides from four site-of-action groups in waterhemp (Amaranthus tuberculatus). Weed Sci 61:460468 CrossRefGoogle Scholar
Bell, MS, Tranel, PJ, Hager, AG (2009) Introducing quad-stack waterhemp: populations containing individuals resistant to four herbicide modes of action. Proc North Central Weed Sci Soc 64:40 Google Scholar
Bernards, ML, Crespo, RJ, Kruger, GR, Gaussoin, R, Tranel, PJ (2012) A waterhemp (Amaranthus tuberculatus) population resistant to 2, 4-D. Weed Sci 60:379384 CrossRefGoogle Scholar
Burke, IC, Yenish, JP, Pittman, D, Gallagher, RS (2009) Resistance of a prickly lettuce (Lactuca serriola) biotype to 2, 4-D. Weed Technol 23:586591 CrossRefGoogle Scholar
Burnside, OC, Wilson, RG, Weisberg, S, Hubbard, KG (1996) Seed longevity of 41 weed species buried 17 years in eastern and western Nebraska. Weed Sci 44:7486 CrossRefGoogle Scholar
Coetzer, E, Al-Khatib, K, Peterson, DE (2002) Glufosinate efficacy on Amaranthus species in glufosinate-resistant soybean (Glycine max). Weed Technol 16:326331 CrossRefGoogle Scholar
de Vlaming, V, Proctor, VW (1968) Dispersal of aquatic organisms: viability of seeds recovered from the droppings of captive killdeer and mallard ducks. Am J Bot 55:2026 CrossRefGoogle Scholar
Evans, JA, Tranel, PJ, Hager, AG, Schutte, B, Wu, C, Chatham, LA, Davis, AS (2016) Managing the evolution of herbicide resistance. Pest Manag Sci 72:7480 CrossRefGoogle ScholarPubMed
Figueiredo, MR, Leibhart, LJ, Reicher, ZJ, Tranel, PJ, Nissen, SJ, Westra, P, Bernards, ML, Kruger, GR, Gaines, TA, Jugulam, M (2018) Metabolism of 2, 4-dichlorophenoxyacetic acid contributes to resistance in a common waterhemp (Amaranthus tuberculatus) population. Pest Manag Sci 74: 23562362 CrossRefGoogle Scholar
Foes, MJ, Tranel, PJ, Wax, LM, Stoller, EW (1998) A biotype of common waterhemp (Amaranthus rudis) resistant to triazine and ALS herbicides. Weed Sci 514520 CrossRefGoogle Scholar
Guo, JQ, Riggins, CW, Hausman, NE, Hager, AG, Riechers, DE, Davis, AS, Tranel, PJ (2015) Nontarget-site resistance to ALS inhibitors in waterhemp (Amaranthus tuberculatus). Weed Sci 63:399407 CrossRefGoogle Scholar
Hager, AG, Wax, LM, Simmons, FW, Stoller, EW (1997) Waterhemp management in agronomic crops. University of Illinois Bulletin 855:12 Google Scholar
Hager, AG, Wax, LM, Stoller, EW, Bollero, GA (2002) Common waterhemp (Amaranthus rudis) interference in soybean. Weed Sci 50:607610 CrossRefGoogle Scholar
Harder, DB, Nelson, KA, Smeda, RJ (2012) Management options and factors affecting control of a common waterhemp (Amaranthus rudis) biotype resistant to protoporphyrinogen oxidase-inhibiting herbicides. Int J Agron 2012, doi: 10.1155/2012/514765 CrossRefGoogle Scholar
Hartzler, RG, Battles, B, Nordby, D (2004) Effect of common waterhemp (Amaranthus rudis) emergence date on growth and fecundity in soybean. Weed Sci 52:242245 CrossRefGoogle Scholar
Hartzler, RG, Buhler, DD, Stoltenberg, DE (1999) Emergence characteristics of four annual weed species. Weed Sci 47:578584 CrossRefGoogle Scholar
Hausman, NE, Singh, S,Tranel, PJ, Riechers, DE, Kaundun, SS, Polge, ND, Thomas, DA, Hager, AG (2011) Resistance to HPPD-inhibiting herbicides in a population of waterhemp (Amaranthus tuberculatus) from Illinois, United States. Pest Manag Sci 67:258261 CrossRefGoogle Scholar
Hausman, NE, Tranel, PJ, Riechers, DE, Hager, AG (2016) Response of a waterhemp (Amaranthus tuberculatus) population resistant to HPPD-inhibiting herbicides to foliar-applied herbicides. Weed Technol 30:106115 CrossRefGoogle Scholar
Hausman, NE, Tranel, PJ, Riechers, DE, Maxwell, DJ, Gonzini, LC, Hager, AG (2013) Responses of an HPPD inhibitor-resistant waterhemp (Amaranthus tuberculatus) population to soil-residual herbicides. Weed Technol 27:704711 CrossRefGoogle Scholar
Heap, I (2018) The International Survey of Herbicide Resistant Weeds. www.weedscience.org. Accessed: May 11, 2018Google Scholar
Heap, IM, Morrison, IN (1992) Resistance to auxin-type herbicides in wild mustard (Sinapis arvensis L.) populations in western Canada. Weed Sci Soc Am Abstr 32:55 Google Scholar
Heijting, S, Van der Werf, W, Kropff, MJ (2008) Seed dispersal by forage harvester and rigid tine cultivator in maize. Weed Res 49:153163 CrossRefGoogle Scholar
Hess, DF (2000) Light-dependent herbicides: an overview. Weed Sci. 48:160170 CrossRefGoogle Scholar
Karim, RS, Man, AB, Sahid, IB (2004) Weed problems and their management in rice fields of Malaysia: an overview. Weed Biol Manag 4:177186 CrossRefGoogle Scholar
Knezevic, SZ, Streibig, JC, Ritz, C (2007) Utilizing R software package for dose-response studies: the concept and data analysis. Weed Technol 21:840848 CrossRefGoogle Scholar
Lee, RM, Hager, AG, Tranel, PJ (2008) Prevalence of a novel resistance mechanism to PPO-inhibiting herbicides in waterhemp (Amaranthus tuberculatus). Weed Sci 56:371375 CrossRefGoogle Scholar
Li, RH, Qiang, S (2009) Composition of floating weed species in lowland rice fields in China and the effects of irrigation frequency and previous crops. Weed Res 49:417427 CrossRefGoogle Scholar
Liu, J, Davis, AS, Tranel, PJ (2012) Pollen biology and dispersal dynamics in waterhemp (Amaranthus tuberculatus). Weed Sci 60:416422 CrossRefGoogle Scholar
Ma, R, Kaundun, SS, Tranel, PJ, Riggins, CW, McGinness, DL, Hager, AG, Hawkes, TH, McIndoe, E, Riechers, DE (2013) Distinct detoxification mechanisms confer resistance to mesotrione and atrazine in a population of waterhemp. Plant Physiol 163:363377 CrossRefGoogle Scholar
McMullan, PM, Green, JM (2011) Identification of a tall waterhemp (Amaranthus tuberculatus) biotype resistant to HPPD-inhibiting herbicides, atrazine, and thifensulfuron in Iowa. Weed Technol 25:514518 CrossRefGoogle Scholar
Mengistu, LW, Mueller-Warrant, GW, Liston, A, Barker, RE (2000) psbA mutation (valine219 to isoleucine) in Poa annua resistant to metribuzin and diuron. Pest Manag Sci 56:209217 3.0.CO;2-8>CrossRefGoogle Scholar
Mitchell, G, Bartlett, DW, Fraser, T, Hawkes, TR, Holt, DC, Townson, JK, Wichert, RA (2001) Mesotrione: a new selective herbicide for use in maize. Pest Manag Sci 57:120128 3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Myers, JA, Vellend, M, Gardescu, S, Marks, PL (2004) Seed dispersal by white-tailed deer: implications for long-distance dispersal, invasion, and migration of plants in eastern North America. Oecologia 139:3544 Google ScholarPubMed
Norris, SR, Barrette, TR, DellaPenna, D (1995) Genetic dissection of carotenoid synthesis in Arabidopsis defines plastoquinone as an essential component of phytoene desaturation. Plant Cell 7:21392149 CrossRefGoogle ScholarPubMed
Norsworthy, JK, Griffith, G, Griffin, T, Bagavathiannan, M, Gbur, EE (2014) In-field movement of glyphosate-resistant Palmer amaranth (Amaranthus palmeri) and its impact on cotton lint yield: evidence supporting a zero-threshold strategy. Weed Sci 62: 237249 CrossRefGoogle Scholar
Oliveira, MC, Jhala, AJ, Gaines, T, Irmak, S, Amundsen, K, Scott, JE, Knezevic, SZ (2017) Confirmation and control of HPPD-inhibiting herbicide-resistant waterhemp (Amaranthus tuberculatus) in Nebraska. Weed Technol 31:6779 CrossRefGoogle Scholar
Patzoldt, WL, Dixon, BS, Tranel, PJ (2003) Triazine resistance in Amaranthus tuberculatus (Moq) Sauer that is not site-of-action mediated. Pest Manag Sci 59:11341142 CrossRefGoogle Scholar
Patzoldt, WL, Hager, AG, McCormick, JS, Tranel, PJ (2006) A codon deletion confers resistance to herbicides inhibiting protoporphyrinogen oxidase. Proc Natl Acad Sci USA 103:1232912334 CrossRefGoogle ScholarPubMed
Patzoldt, WL, Tranel, PJ (2007) Multiple ALS mutations confer herbicide resistance in waterhemp (Amaranthus tuberculatus). Weed Sci 55:421428 CrossRefGoogle Scholar
Patzoldt, WL, Tranel, PJ, Hager, AG (2002) Variable herbicide responses among Illinois waterhemp (Amaranthus rudis and A. tuberculatus) populations. Crop Prot 21:707712 CrossRefGoogle Scholar
Patzoldt, WL, Tranel, PJ,Hager, AG (2005) A waterhemp (Amaranthus tuberculatus) biotype with multiple resistance across three herbicide sites of action. Weed Sci 53:3036 CrossRefGoogle Scholar
Robinson, AP, Simpson, DM, Johnson, WG (2012) Summer annual weed control with 2, 4-D and glyphosate. Weed Technol 26:657660 CrossRefGoogle Scholar
Sarangi, D, Sandell, LD, Knezevic, SZ, Aulakh, JS, Lindquist, JL, Irmak, S, Jhala, AJ (2015) Confirmation and control of glyphosate-resistant common waterhemp (Amaranthus rudis) in Nebraska. Weed Technol 29:8292 CrossRefGoogle Scholar
Sarangi, D, Tyre, AJ, Patterson, EL, Gaines, TA, Irmak, S, Knezevic, SZ, Lindquist, JL, Jhala, AJ (2017) Pollen-mediated gene flow from glyphosate-resistant common waterhemp (Amaranthus rudis Sauer): consequences for the dispersal of resistance genes. Scientific Reports 7, Article 44913. doi: 10.1038/srep44913 CrossRefGoogle ScholarPubMed
Sauer, J (1955) Revision of the dioecious amaranths . Madrono 13:546 Google Scholar
Seefeldt, SS, Jensen, JE, Fuerst, EP (1995) Log-logistic analysis of herbicide dose-response relationships. Weed Technol 9:218227 CrossRefGoogle Scholar
Shergill, LS, Barlow, BR, Bish, MD, Bradley, KW (2018) Investigations of 2, 4-D and multiple herbicide resistance in a Missouri waterhemp (Amaranthus tuberculatus) population. Weed Sci 66:386394 CrossRefGoogle Scholar
Shoup, DE, Al-Khatib, K (2004) Control of protoporphyrinogen oxidase inhibitor–resistant common waterhemp (Amaranthus rudis) in corn and soybean. Weed Technol 18:332340 CrossRefGoogle Scholar
Shoup, DE, Al-Khatib, K, Peterson, DE (2003) Common waterhemp (Amaranthus rudis) resistance to protoporphyrinogen oxidase–inhibiting herbicides. Weed Sci 51:145150 CrossRefGoogle Scholar
Shukla, A, Devine, MD (2008) Basis of crop selectivity and weed resistance to triazine herbicides. Pages 111118 in LeBaron, HM, McFarland, JE, Burnside, OC, eds, The Triazine Herbicides: 50 years Revolutionizing Agriculture. San Diego: Elsevier CrossRefGoogle Scholar
Steckel, LE, Sprague, CL (2004) Common waterhemp (Amaranthus rudis) interference in corn. Weed Sci 52:359364 CrossRefGoogle Scholar
Strom, SA, Gonzini, L, Mitsdarfer, C, Davis, A, Riechers, DE, Hager, AG (2017) Differential response of a multiple herbicide-resistant population of waterhemp to chloroacetamide herbicides. North Central Weed Sci Soc Proc 72:194 Google Scholar
Thinglum, KA, Riggins, CW, Davis, AS, Bradley, KW, Al-Khatib, K, Tranel, PJ (2011) Wide distribution of the waterhemp (Amaranthus tuberculatus) ΔG210 PPX2 mutation, which confers resistance to PPO-inhibiting herbicides. Weed Sci 59:2227 CrossRefGoogle Scholar
Tranel, PJ, Riggins, CW, Bell, MS, Hager, AG (2011) Herbicide resistance in Amaranthus tuberculatus: a call for new options. J Agric Food Chem 59:58085812 CrossRefGoogle Scholar
Tranel, PJ, Wright, TR (2002) Resistance of weeds to ALS-inhibiting herbicides: what have we learned? Weed Sci A50:700712 CrossRefGoogle Scholar
van Almsick, A (2009) New HPPD-inhibitors—a proven mode of action as a new hope to solve current weed problems. Outlook Pest Manag 20:2730 CrossRefGoogle Scholar
Varanasi, VK, Brabham, C, Norsworthy, JK (2018) Confirmation and characterization of non-target site resistance to fomesafen in Palmer amaranth (Amaranthus palmeri). Weed Sci 66:702709 CrossRefGoogle Scholar
Vyn, JD, Swanton, CJ, Weaver, SE, Sikkema, PH (2006) Control of Amaranthus tuberculatus var. rudis (common waterhemp) with pre and post-emergence herbicides in Zea mays L. (maize). Crop Prot 25:10511056 CrossRefGoogle Scholar
Walsh, MJ, Powles, SB, Beard, BR, Parkin, BT, Porter, SA (2004) Multiple-herbicide resistance across four modes of action in wild radish (Raphanus raphanistrum). Weed Sci 52:813 CrossRefGoogle Scholar
Woodyard, AJ, Hugie, JA, Riechers, DE (2009) Interactions of mesotrione and atrazine in two weed species with different mechanisms for atrazine resistance. Weed Sci 57:369378 CrossRefGoogle Scholar
Zelaya, IA, Owen, MDK (2005) Differential response of Amaranthus tuberculatus (Moq ex DC JD Sauer) to glyphosate. Pest Manag Sci 61:936950 CrossRefGoogle Scholar