Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T11:07:29.866Z Has data issue: false hasContentIssue false

Aminocyclopyrachlor Enhances Fenoxaprop Efficacy for Smooth Crabgrass Control

Published online by Cambridge University Press:  20 January 2017

Patrick E. McCullough*
Affiliation:
Department of Crop and Soil Sciences, University of Georgia, Griffin, GA 30223-1797
Stephen E. Hart
Affiliation:
Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, North Brunswick, NJ 08901
James T. Brosnan
Affiliation:
Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996-4561
Gregory K. Breeden
Affiliation:
Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996-4561
*
Corresponding author's E-mail: pmccull@uga.edu

Abstract

Fenoxaprop effectively controls crabgrass in tall fescue turf, but antagonism with growth-regulating herbicides reduces potential to apply fenoxaprop in combination with many herbicides registered for broadleaf weed control. Aminocyclopyrachlor is a new broadleaf weed control herbicide that has not been evaluated in combination with fenoxaprop. Field experiments were conducted in Georgia, New Jersey, and Tennessee to investigate tank mixtures of fenoxaprop with aminocyclopyrachlor for smooth crabgrass and white clover control. Fenoxaprop alone exhibited substantial activity on smooth crabgrass but control was greater with fenoxaprop + aminocyclopyrachlor treatments. By 4 and 6 wk after treatment (WAT), approximately 22 and 44% less fenoxaprop was required to achieve 80% smooth crabgrass control when the herbicide was tank-mixed with aminocyclopyrachlor at 52.5 and 79 g ai ha−1, respectively. Fenoxaprop did not reduce white clover control with aminocyclopyrachlor because 97% control was achieved by 4 WAT for all aminocyclopyrachlor + fenoxaprop treatments. Tall fescue was not injured by any treatment. Results suggest aminocyclopyrachlor enhances fenoxaprop efficacy for smooth crabgrass control in tall fescue.

El fenoxaprop controla efectivamente Digitaria spp. en Festuca arundinacea pero su antagonismo con herbicidas reguladores de crecimiento reduce el potencial para aplicar fenoxaprop en combinación con muchos de los herbicidas registrados para el control de malezas de hoja ancha. Aminocyclopyrachlor es un nuevo herbicida controlador de malezas de hoja ancha que aún no ha sido evaluado en combinación con fenoxaprop. Se realizaron experimentos de campo en Georgia, New Jersey y Tennessee para evaluar la mezcla en tanque de fenoxaprop con aminocyclopyrachlor para el control de D. ischaemum y Trifolium repens. El fenoxaprop aplicado solo mostró actividad sustancial en D. ischaemum, pero el control fue mayor con los tratamientos de fenoxaprop + aminocyclopyrachlor. Para las semanas 4 y 6 después del tratamiento (WAT), aproximadamente se requirió 22 y 44% menos fenoxaprop para obtener un control del 80% de D. ischaemum cuando el herbicida se mezcló en tanque con aminocyclopyrachlor a 52.5 y 79 g ia ha−1, respectivamente. El fenoxaprop no redujo el control de T.repens causado por el aminocyclopyrachlor, pues el 97% de control se logró a las 4 WAT con todos los tratamientos de aminocyclopyrachlor + fenoxaprop. F. arundinacea no sufrió daños con ninguno de los tratamientos. Los resultados sugieren que aminocyclopyrachlor aumenta la eficacia de fenoxaprop para el control de D.ischaemum en el cultivo de F. arundinacea.

Type
Notes
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous, . 2004. Acclaim® Extra Herbicide Label. Montvalle, NJ Bayer Environmental Science.Google Scholar
Anonymous, . 2007. Q-4® Turf Herbicide Label. Kansas City, MO PBI Gordon Corp.Google Scholar
Anonymous, . 2010. Imprelis Herbicide Label. Newark, DE DuPont.Google Scholar
Blackshaw, R. E., Harker, K. N., Clayton, G. W., and O'Donovan, J. T. 2006. Broadleaf herbicide effects on clethodim, and quizalofop-P efficacy on volunteer wheat (Triticum aestivum). Weed Technol. 20:221226.Google Scholar
Brosnan, J. T., Breeden, G. K., and McCullough, P. E. 2010. Efficacy of two dithiopyr formulations for control of smooth crabgrass (Digitaria ischaemum [Schreb] Schreb. ex Muhl.) at various stages of growth. HortSci. 45:961965.Google Scholar
Bukum, B., Bradley, R. B., Nissen, S. J., Westra, P., Shaner, D. L., and Brunk, G. 2010. Absorption and translocation of aminocyclopyrachlor and aminocyclopyrachlor-methyl ester in Canada thistle (Cirsium arvense). Weed Sci. 58:96102.CrossRefGoogle Scholar
Dernoeden, P. H. 1987. Tolerance of perennial ryegrass and tall fescue seedlings to fenoxaprop. Agron. J. 79:10351037.Google Scholar
Dernoeden, P. H. 1989. Mature creeping bentgrass and seedling Kentucky bluegrass tolerance to fenoxaprop. Int. Turfgrass Soc. Res. J. 6:279283.Google Scholar
Dernoeden, P. H., Bigelow, C. A., Kaminski, J. E., and Krouse, J. M. 2003. Smooth crabgrass control in perennial ryegrass and creeping bentgrass tolerance to quinclorac. HortSci. 38:607612.Google Scholar
Dernoeden, P. H. and Fidanza, M. A. 1994. Fenxoprop activity influenced by auxin-like herbicide application timing. HortSci. 29:15181519.Google Scholar
Dernoeden, P. H. and Fry, J. D. 1986. Postemergence control of crabgrass in transition zone turf using MSMA and fenoxaprop. Washington D.C. Transportation Research Record N1075, Roadside Design and Management. Pp. 14.Google Scholar
Dernoeden, P. H., Mahoney, M. J., and Carroll, M. J. 1992. Smooth crabgrass control in perennial ryegrass with repeated low fenoxaprop application rates. Hort Sci. 27:10011003.Google Scholar
Doroh, M. C., McElroy, J. S., and van Santen, E. 2010. Evaluation of new aryloxyphenoxypropionate herbicides for control of bermudagrass in zoysiagrass. Weed Technol. (In press).CrossRefGoogle Scholar
Focke, M. and Lichtenthaler, H. K. 1987. Inhibition of the acetyl-CoA carboxylase of barley chloroplasts by cycloxydim and sethoxydim. Z. Naturforsch. 42c:13611363.Google Scholar
Hall, D. W., McCarty, L. B., and Murphy, T. R. 1994. Weed taxonomy. Pages 18 in Turgeon, A. J., ed. Turf Weeds and Their Control. Madison, WI American Society of Agronomy.Google Scholar
Hart, S. E., Lycan, D. W., and Murphy, J. A. 2004. Use of quinclorac for large crabgrass (Digitaria sanguinalis) control in newly summer-seeded creeping bentgrass (Agrostis stolonifera). Weed Technol. 18:357379.Google Scholar
Johnson, B. J. and Carrow, R. N. 1993. Common bermudagrass control in tall fescue with fenoxaprop. Int. Turfgrass Soc. Res. J. 7:303309.Google Scholar
Lefsrud, C. and Hall, J. C. 1989. Basis for sensitivity differences among crabgrass, oat, and wheat to fenoxaprop-ethyl. Pestic. Biochem. Physiol. 34:218227.Google Scholar
Lewis, D., McElroy, S., Sorochan, J., Mueller, T., Samples, T., and Breeden, G. 2010. Efficacy and safening of aryloxyphenoxypropionate herbicides when tank-mixed with triclopyr for bermudagrass control in zoysiagrass turf. Weed Technol. In press.Google Scholar
McCarty, B., Murphy, T., Whitwell, T., and Yelverton, F. 2005. Turfgrass weeds. Pages 663703 in McCarty, L. B., ed. Best Golf Course Management Practices. 2nd ed. Upper Saddle River, NJ Prentice-Hall.Google Scholar
McElroy, J. S. and Breeden, G. K. 2006. Triclopyr safens the use of fluazifop and fenoxaprop on zoysiagrass while maintaining bermudagrass suppression. Online. Applied Turfgrass Science. DOI:10.1094/ATS-2006-0502-01-RS.Google Scholar
McCullough, P. E., Brosnan, J. T., and Breeden, G. K. 2009. Fluroxypyr compatibility with fenoxaprop for smooth crabgrass and white clover control in tall fescue. Applied Turfgrass Science. DOI:10.1094/ATS-2009-1204-01-RS.Google Scholar
McElroy, J. S. and Breeden, G. K. 2006. Triclopyr safens the use of fluazifop and fenoxaprop on zoysiagrass while maintaining bermudagrass suppression. Applied Turfgrass Science. DOI:10.1094/ATS-2006-0502-01-RS.Google Scholar
Rudenko, M. 2009. Integrating restoration and ecologically based weed management practices for invasive knotweed control. . Corvallis, OR Oregon State University. Pp. 170.Google Scholar
Senseman, S. A. 2007. Herbicide Handbook. Lawrence, KS Weed Science Society of America. 458 p.Google Scholar
Shimabukro, R. H., Walsh, W. C., and Hoerauf, R. A. 1986. Reciprocal antagonism between the herbicides, diclofop-methyl and 2,4-D, in corn and soybean tissue culture. Plant Physiol. 80:612617.CrossRefGoogle Scholar
Taylor, H. F. and Loader, M. P. C. 1984. Research on the control of wild oats and broad-leaved weeds by herbicide mixtures. Outl.ook Agric. 13:5868.Google Scholar
Willis, J. B., Beam, J. B., Barker, W. L., and Askew, S. D. 2006. Weed control options in spring-seeded tall fescue (Festuca arundinacea). Weed Technol. 20:10401046.CrossRefGoogle Scholar
Yelverton, F. H., Hoyle, J. A., Gannon, T. W., and Warren, L. S. 2009. Plant counts, digital image analysis, and visual ratings for estimating weed control in turf: are they correlated? Proc. South Weed Sci. Soc. 62:399.Google Scholar