Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-24T07:35:54.741Z Has data issue: false hasContentIssue false

Activity of Nicosulfuron, Rimsulfuron, and Their Mixture on Field Corn (Zea mays). Soybean (Glycine max), and Seven Weed Species

Published online by Cambridge University Press:  12 June 2017

Mounir Mekki
Affiliation:
Dep. Phytologie, Univ. Laval, Ste-Foy, Québec, Canada, G1K 7P4
Gilles D. Leroux
Affiliation:
Dep. Phytologie, Univ. Laval, Ste-Foy, Québec, Canada, G1K 7P4

Abstract

Seven annual weed species were treated under greenhouse conditions with six rates of either nicosulfuron, rimsulfuron, or a 1:1 mixture (DPX-79406). Herbicide rates in g ai/ha producing 90% dry biomass reduction (GR90) were calculated for each weed species. Accordingly, weeds were classified as very susceptible when GR90 ≤ 9, susceptible when 9 < GR90 ≤ 18, moderately susceptible when 18 < GR90 ≤ 27, and tolerant when, GR90 > 27. Giant and green foxtails were very susceptible to the three herbicides. Proso millet was very susceptible to rimsulfuron and DPX-79406, and susceptible to nicosulfuron. Wild oat was susceptible to nicosulfuron and DPX-79406, and moderately susceptible to rimsulfuron. Redroot pigweed was very susceptible to nicosulfuron; whereas, it was susceptible to rimsulfuron and DPX-79406. Common ragweed and smooth crabgrass were tolerant to the three herbicides. In a second experiment, we used regression estimate analysis with an additive reference model to evaluate nicosulfuron and rimsulfuron interaction on corn, soybean, common ragweed, and smooth crabgrass. We found these herbicides synergistic on smooth crabgrass, antagonistic on soybean, less than additive on common ragweed, and additive on corn.

Type
Research
Copyright
Copyright © 1994 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Anonymous. 1988. DPX-V9360. Experimental herbicide for com. Technical information. E. I. duPont de Nemours and Co., Inc., Agricultural Products Dep., Wilmington, DE. 6 p.Google Scholar
2. Anonymous. 1989. DPX-79406: Experimental herbicide for corn. Technical information. E. I. duPont de Nemours and Co., Inc., Agricultural Products Dep., Wilmington, DE. 6 p.Google Scholar
3. Anonymous. 1990. Experimental herbicide for potatoes. Technical Bull. E. I. duPont de Nemours and Co., Inc., Agricultural Products Dep., Wilmington, DE 5 p.Google Scholar
4. Beraud, J. M. and Delahousse, B. 1993. Le nicosulfuron: Herbicide de postlevée sélectif du maïs. Phytoma 446:5759.Google Scholar
5. Everaerer, L. 1991. Le DPX-E9636: Herbicide maïs. Phytoma 433:6567.Google Scholar
6. Flint, J. L., Cornelius, P. L., and Barrett, M. 1988. Analyzing herbicide interactions: A statistical treatment of Colby's method. Weed Technol. 2:304309.Google Scholar
7. Forney, R. D., Dobrotka, M. J., and Rowe, S. W. 1989. DPX-V9360 and DPX-79406, two postemergence herbicides for corn: summary and comparison of 1989 performance on annual grasses. North Cent. Weed. Sci. Soc. Proc., Lexington, KY. 44:30.Google Scholar
8. Hatzios, K. K. and Penner, D. 1985. Interactions of herbicides with other agrochemicals in higher plants. Rev. Weed Sci. 1:163.Google Scholar
9. Kapusta, G. and Krausz, R. F. 1992. Interaction of terbufos and nicosulfuron on corn (Zea mays) . Weed Technol. 6:9991003.CrossRefGoogle Scholar
10. Kimura, F., Haga, T., Sakashita, N., Murai, S., and Fujikawa, K. 1989. SL-950, a novel sulfonylurea herbicide for corn. Br. Crop Prot. Conf. Weeds 1:2934.Google Scholar
11. Klamroth, E. E., Fedtke, C., and Kühbauch, W. C. 1989. Mechanism of synergism between metribuzin and MZH 2091 on ivyleaf morningglory (Ipomoea hederacea). Weed Sci. 37:517520.CrossRefGoogle Scholar
12. Little, D. L. and Shaner, D. L. 1991. Absorption and translocation of the imidazolinones herbicides. p. 5370 in Shaner, D. L. and O'Connor, S. L., eds. The Imidazolinones Herbicides. CRC Press, Inc., Boca Raton, FL.Google Scholar
13. Morton, C. A., Harvey, R. G., Kells, J. J., Lueschen, W. E., and Fritz, V. A. 1991. Effect of DPX-V9360 and terbufos on field and sweet corn (Zea mays) under three environments. Weed Technol. 5:130136.CrossRefGoogle Scholar
14. Nash, R. G. 1981. Phytotoxic interaction studies—techniques for evaluation and presentation of results. Weed Sci. 29:147155.Google Scholar
15. Nash, R. G. and Jansen, L. L. 1973. Determining phytotoxic pesticide interactions in soil. J. Environ. Qual. 2(4):503510.CrossRefGoogle Scholar
16. Novosel, K. M., Renner, K. A., and Kells, J. J. 1993. Responses of sugarbeet to nicosulfuron and primisulfuron. Weed Sci. Soc. Am. Abstr. 33:17.Google Scholar
17. Palm, H. L., Liang, P. H., Fuesler, T. P., Leek, G. L., Strachan, S. D., Wittenbach, V. A., and Swinchatt, M. L. 1989. New low-rate sulfonylureas for post-emergence weed control in com. Br. Crop Prot. Conf. Weeds 1:2328.Google Scholar
18. Putnam, A. R. and Penner, D. 1974. Pesticide interactions in higher plants. Residue Rev. 50:73110.Google Scholar
19. SAS Institute Inc. 1989. SAS/STAT® User's Guide, Version 6.03, 4th ed., Vol. 2, SAS Institute Inc., Cary, NC. 846 p.Google Scholar
20. Reinke, H., Rosenzweig, A., Claus, J., Kreidi, M., Chisholm, C., and Jensen, P. 1991. Experimental sulfonylurea herbicide for potatoes. Br. Crop Prot. Conf. Weeds 1:445451.Google Scholar
21. Streibig, J. C. 1981. A method for determining the biological effect of herbicide mixtures. Weed Sci. 29:469473.CrossRefGoogle Scholar
22. Streibig, J. C. 1988. Herbicide bioassay. Weed Res. 28:479484.CrossRefGoogle Scholar