Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T10:00:11.892Z Has data issue: false hasContentIssue false

Preemergence Control of Silvery Threadmoss (Bryum argenteum) Grown from Spores and Bulbils in Axenic Culture

Published online by Cambridge University Press:  20 January 2017

Angela R. Post*
Affiliation:
Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA 24061
David S. McCall
Affiliation:
Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA 24061
Shawn D. Askew
Affiliation:
Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA 24061
*
Corresponding author's E-mail: angela.post@okstate.edu.

Abstract

Silvery threadmoss naturally reproduces through spore and bulbil production, both of which have potential to be controlled prior to establishment. Studies have not evaluated effects of turf protection products on moss protonema or gametophyte growth from spores or bulbils; consequently, most moss is controlled POST on putting greens. Initial studies were performed to determine the optimal growth temperature for spores and bulbils in sterile culture. Protonemata from spores grew optimally at 29.5 C and gametophytes from bulbils grew optimally at 22.5 C. Three subsequent in vitro studies were conducted to evaluate effects of turf protection products on moss development from spores or bulbils in axenic culture at a constant 24 C. Carfentrazone, which effectively controls mature silvery threadmoss gametophytes POST, also reduced green cover of moss protonemata and gametophyte production from spores and bulbils. All combinations with carfentrazone reduced area under the progress curve (AUPC) for green cover of moss for both spores and bulbils by 80% or more by 3 wk after treatment. Sulfentrazone, oxyfluorfen, oxadiazon, saflufenacil, flumioxazin, and pyraflufen-ethyl reduced AUPC of moss equivalent to carfentrazone for both propagule types. The two fosetyl-Al products, phosphite, and mineral oil caused an increase in silvery threadmoss cover between 22 and 113% of the nontreated for spores; however, only methiozolin positively influenced AUPC (90.2%) compared to the nontreated for bulbils. Though silvery threadmoss is typically targeted POST on putting greens, there are products that can provide PRE control, including the industry standard of carfentrazone. These data suggest that differences may occur between turf protection products in their ability to suppress silvery threadmoss establishment from spores or bulbils.

Bryum argenteum es un musgo que se reproduce naturalmente mediante esporas y pequeños bulbos, y para ambos hay potencial de control antes del establecimiento. No hay estudios que hayan evaluado los efectos de productos de protección para céspedes sobre el crecimiento del musgo en estados de protonema y gametofítico a partir de esporas o bulbos. Consecuentemente, la mayoría de los musgos son controlados POST en putting greens. Estudios iniciales fueron realizados para determinar la temperatura para el crecimiento óptimo de esporas y bulbos en un medio estéril. Se creció protonema a partir de esporas óptimamente a 29.5 C y gametofitos a partir de bulbos a 22.5 C. Luego se realizaron tres estudios in vitro para evaluar los efectos de productos de protección para céspedes sobre el desarrollo del musgo en un cultivo axénico a una temperatura constante de 24 C. Carfentrazone, el cual controla efectivamente gametofitos maduros de B. argenteum en aplicaciones POST, también redujo la cobertura verde de protonometa del musgo y la producción de gametofitos a partir de esporas y bulbos. Todas las combinaciones con carfentrazone redujeron el área bajo la curva de progreso (AUPC) de la cobertura verde del musgo tanto para esporas como para bulbos en 80% o más a 3 semanas después del tratamiento. Sulfentrazone, oxyfluorfen, oxadiazon, saflufenacil, flumioxazin, y pyraflufen-ethyl redujeron AUPC del musgo a niveles equivalentes a carfentrazone para ambos tipos de propágulo. Los dos productos de fosetyl-Al, phosphite, y aceite mineral causaron un incremento en la cobertura del musgo entre 22 y 113% con comparación al testigo sin tratamiento para esporas. Sin embargo, solamente methiozolin influenció positivamente AUPC (90.2%) al compararlo con el testigo sin tratamiento en el caso de los bulbos. Aunque B. argenteum es típicamente controlado POST en putting greens, hay productos que pueden brindar control PRE, incluyendo el estándar de la industria, carfentrazone. Estos datos sugieren que diferencias pueden ocurrir entre productos de protección para césped con respecto a su habilidad para suprimir el establecimiento del musgo B. argenteum a partir de esporas o bulbos.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor for this paper: James Brosnan, University of Tennessee.

References

Literature Cited

Basile, DV, Basile, MR (1988) Procedures used for the axenic culture and experimental treatment of bryophytes. Pages 1116 in Glime, JM, ed. Methods in Bryology. Proceedings of the Bryological Methods Workshop, Mainz. Nichinan, Japan: The Hattori Botanical Laboratory Google Scholar
Best, GM (1904) Vegetative reproduction of mosses. The Bryologist 4:14 Google Scholar
Borst, SM, McElroy, JS, Breeden, G (2010) Silvery-thread moss control in creeping bentgrass putting greens with mancozeb plus copper hydroxide and carfentrazone applied in conjunction with cultural practices. HortTech 20:574578 Google Scholar
Buelovic, A, Sabovljevic, M, Grubisic, D, Konjevic, R (2004) Phytohormone influence on the morphogenesis of two mosses (Bryum argenteum Hedw. and Atrichum undulatum (Hedw.) P. Beauv.). Isr J Plant Sci 52:3136 Google Scholar
Burnell, KD, Yelverton, FH, Neal, JC, Gannon, TW, McElroy, JS (2004) Control of silvery-thread moss (Bryum argenteum Hedw.) in creeping bentgrass (Agrostis palustris Huds.) putting greens. Weed Technol 18:560565 Google Scholar
Cook, T, McDonald, B, Merrifield, K (2002) Controlling moss in putting greens. Golf Course Manag 70:106106 Google Scholar
Crum, HA, Anderson, LE (1981) Mosses of Eastern North America. Volume I. New York: Columbia University Press. 663 pGoogle Scholar
Duckett, JG, Burch, J, Fletcher, PW, Matcham, HW, Read, DJ, Russell, AJ, Pressel, S (2004) In vitro cultivation of bryophytes: a review of practicalities, problems, progress, and promise. J Bryol 26:320 Google Scholar
Fausey, JC (2003) Controlling liverwort and moss now and in the future. HortTech 13:3538 Google Scholar
Frahm, JP (2007) Diversity, dispersal and biogeography of bryophytes (mosses). Biodivers Conserv 17:277284 Google Scholar
[GCSAA] Golf Course Superintendents Association of America (2012) Environmental Best Management Practices for Virginia's Golf Courses. Richmond, VA: Golf Course Superintendents Association of America. Pp 89101 Google Scholar
Happ, KA (1998) Moss eradication in putting green turf. US Golf Assoc Green Sec Rec 36:15 Google Scholar
Hensley, DL, Masiunas, JB, Carpenter, PL (1982) An inexpensive temperature gradient system. HortSci 17:585586 Google Scholar
Horsley, KL, Stark, R, McLetchie, DN (2011) Does the silver moss Bryum argenteum exhibit sex-specific patterns in vegetative growth rate, asexual fitness, or prezygotic reproductive investment? Ann Bot 107:897907 Google Scholar
Jones, PR, Rosentreter, R (2006) Gametophyte fragment growth of three common desert mosses on artificial and natural substrates. Bryologist 109:166172 Google Scholar
Karcher, DE, Richardson, MD (2003) Quantifying turfgrass color using digital image analysis. Crop Sci 43:943951 Google Scholar
Kennelly, MM, Todd, TC, Settle, DM, Fry, JD (2010) Moss control on creeping bentgrass greens with standard and alternative approaches. Hort Sci 45:654659 Google Scholar
Liang, SF, Sun, Y, Zhu, RL (2010) In vitro micropropagation of Bryum argenteum Hedw. Cryptogamie Bryologie 31:233239 Google Scholar
McIntosh, MS (1983) Analysis of combined experiments. Agron J 75:153155 Google Scholar
Miles, CJ, Longton, RE (1992) Deposition of moss spores in relation to distance from parent gametophytes. J Bryol 17:355368 Google Scholar
Murashige, T, Skoog, F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473497 Google Scholar
Rowntree, JK (2006) Development of novel methods for the initiation of in vitro bryophyte cultures for conservation. Plant Cell Tiss Organ Cult 87:191201 Google Scholar
Rudolph, ED (1970) Local dissemination of plant propagules in Antarctica Pages 812817 in Holdgate, MW, ed. Antarctic Ecology London: Academic Press Google Scholar
Sabovljevic, M., Bijelovic, A., Dragicevic, I. 2002. Effective and easy way of establishing in vitro culture of mosses, Bryum argenteum Hedw. and Bryum capillare Hedw. (Bryaceae). Arch Biol Sci 54:78 Google Scholar
Sabovljevic, M, Bijelovic, A, Dragicevic, I (2003) In vitro culture of mosses: Aloina aloides (K. F. Schulz) Kindb., Brachythecium velutinum (Hedw.) B.S.G., Ceratodon purpureus (Hedw.) Brid., Eurhynchium praelongum (Hedw.) B.S.G., and Grimmia pulvinata (Hedw.) Sm. Turk J Bot 27:441446 Google Scholar
Sabovljevic, M, Bijelovic, A, Grubisic, D (2010) Gibberellin influence on the morphogenesis of the moss Bryum argenteum Hedw. in in vitro conditions. Arch Biol Sci Belgrade 62:373380 Google Scholar
Sargent, ML (1988) A guide to the axenic culturing of a spectrum of bryophytes. Pages 1724 in Glime, JM, ed. Methods in Bryology. Proceedings of the Bryological Methods Workshop, Mainz. Nichinan, Japan: The Hattori Botanical Laboratory Google Scholar
Shaw, AJ, Albright, D (1990) Potential for the evolution of heavy metal tolerance in Bryum argenteum, a moss. II. Generalized tolerances among diverse populations. Bryologist 93:187192 Google Scholar
Smith, RIL (1999) Biological and environmental characteristics of three cosmopolitan mosses dominant in continental Antarctica. J Veg Sci 10:231242 Google Scholar
Thompson, C, Fry, J, Kennelly, M (2011) Evaluation of conventional and alternative products for silvery-thread moss control in creeping bentgrass. Appl: Turf Sci. DOI: Google Scholar