Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T23:27:28.170Z Has data issue: false hasContentIssue false

Light-Activated, Sensor-Controlled Sprayer Provides Effective Postemergence Control of Broadleaf Weeds in Fallow

Published online by Cambridge University Press:  20 January 2017

Dilpreet S. Riar
Affiliation:
Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164
Daniel A. Ball*
Affiliation:
Oregon State University, Columbia Basin Agricultural Research Center, Pendleton, OR, 97801
Joseph P. Yenish
Affiliation:
Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164
Ian C. Burke
Affiliation:
Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164
*
Corresponding author's E-mail: daniel.ball@oregonstate.edu

Abstract

A study was conducted in summer fallow fields near Davenport, WA, and Pendleton, OR, in 2007 and 2008 to evaluate the POST weed control efficacy of herbicide treatments applied with a light-activated, sensor-controlled (LASC) sprayer compared to the broadcast application of glyphosate. The LASC application of glyphosate alone (at all rates) and in mixture with pyrasulfotole plus bromoxynil or 2,4-D had weed control (≥ 88%) and dry weight (≤ 6% of control) similar to the broadcast application of glyphosate across locations and years. Tumble pigweed and prickly lettuce control with bromoxynil, 2,4-D, or carfentrazone plus dicamba, was 12 to 85% less than glyphosate applied alone with LASC or broadcast sprayer. Overall, none of the tested alternate herbicides was promising enough to replace glyphosate under present conditions.

En 2007 y 2008 se llevó al cabo un estudio en campos de barbecho en verano, cerca de Davenport, WA y Pendleton, OR, para evaluar la eficacia del control post-emergente de malezas con herbicidas aplicados con un aspersor controlado y activado por un sensor de luz en comparación con la aplicación de glifosato con un aspersor convencional. Las aplicaciones de glifosato solo (a todas las dosis) y mezclado con pyrasulfotole más bromoxynil o 2,4-D con el aspersor controlado y activado por un sensor de luz, obtuvieron un control de malezas (≥ 88%) y peso seco (≤ 6% del control) similar a la aplicación de glifosato con el aspersor convencional en todas las localidades y años. El control de Amaranthus albus y Lactuca serriola con bromoxynil, carfentrazone más dicamba o 2,4-D, fue 12 a 85% menor que con glifosato aplicado solo con el aspersor controlado y activado por un sensor de luz o el convencional. En general, ninguno de los herbicidas alternos probados fue lo suficientemente prometedor para reemplazar al glifosato bajo las condiciones actuales.

Type
Weed Managment—Techniques
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ahrens, W. H. 1994. Relative costs of a weed-activated versus conventional sprayer in northern Great Plains fallow. Weed Technol. 8:5057.CrossRefGoogle Scholar
Bennett, A. and Pannell, D. J. 1998. Economic evaluation of a weed-activated sprayer for herbicide application to patchy weed populations. Aust. J. Agric. Econ. 42:389408.CrossRefGoogle Scholar
Biller, R. H. 1998. Reduced input of herbicides by use of optoelectronic sensors. J. Agric. Eng. Res. 71:357362.CrossRefGoogle Scholar
Blackshaw, R. E., Molnar, L. J., and Lindwall, C. W. 1998. Merits of a weed-sensing sprayer to control weeds in conservation fallow and cropping systems. Weed Sci. 46:120126.CrossRefGoogle Scholar
Burke, I. C., Yenish, J. P., Pittmann, D., and Gallagher, R. S. 2009. Resistance of a prickly lettuce (Lactuca serriola) biotype to 2,4-D. Weed Technol. 23:586591.CrossRefGoogle Scholar
Corbett, J. L., Askew, S. D., Thomas, W. E., and Wilcut, J. W. 2004. Weed efficacy evaluations for bromoxynil, glufosinate, glyphosate, pyrithiobac, and sulfosate. Weed Technol. 18:443453.CrossRefGoogle Scholar
Culpepper, A. S. and York, A. C. 1999. Weed management and net returns with transgenic, herbicide-resistant, and nontransgenic cotton (Gossypium hirsutum). Weed Technol. 13:411420.CrossRefGoogle Scholar
Dammer, K. H. and Wartenberg, G. 2007. Sensor-based weed detection and application of variable herbicide rates in real time. Crop Prot. 26:270277.CrossRefGoogle Scholar
Donaldson, D., Kiely, T., and Grube, A. 2002. Pesticides industry sales and usage. 1998 and 1999 market estimates. Washington DC Environmental Protection Agency Office of Pesticide Programs, Rep. EPA–733–R–02–001. 44 p.Google Scholar
, W. L. and McCloy, K. R. 1992. Spot spraying. Agric. Eng. 11:2629.Google Scholar
Frans, R., Talbert, R., Marx, D., and Crowley, H. 1986. Experimental design and techniques for measuring and analyzing plant response to weed control practices. Pages 3738 in Camper, N. D., ed. Research Methods in Weed Science. 3rd ed. Champaign, IL Southern Weed Science Society.Google Scholar
Gianessi, L. P. and Reigner, N. P. 2007. The value of herbicides in U.S. crop production. Weed Technol. 21:559566.CrossRefGoogle Scholar
Hanks, J. E. and Beck, J. L. 1998. Sensor-controlled hooded sprayer for row crops. Weed Technol. 12:308314.CrossRefGoogle Scholar
Jemmett, E. D., Thill, D. C., Rauch, T. A., Ball, D. A., Frost, S. M., Bennett, L. H., Yenish, J. P., and Rood, R. J. 2008. Rattail fescue (Vulpia myuros) control in chemical-fallow cropping systems. Weed Technol. 22:435441.CrossRefGoogle Scholar
Krausz, R., Kapusta, G., and Matthews, J. L. 1996. Control of annual weeds with glyphosate. Weed Technol. 10:957962.CrossRefGoogle Scholar
Mathiassen, S. K. and Kudsk, P. 1999. Effects of simulated dust deposits on herbicide performance. Page 205 in Proceedings of the 11th European Weed Research Society Symposium, Basel.Google Scholar
McIntosh, M. S. 1983. Analysis of combined experiments. Agron. J. 75:153155.CrossRefGoogle Scholar
Mickelson, J. A., Bussan, A. J., Davis, E. S., Hulting, A. G., and Dyer, W. E. 2004. Postharvest kochia (Kochia scoparia) management with herbicides in small grains. Weed Technol. 18:426431.CrossRefGoogle Scholar
[NASS] National Agricultural Statistics Service. 2010. Agricultural chemical usage. Average total herbicide use in Washington State. http://www.pestmanagement.info/nass/act_dsp_statcs2_state.cfm. Accessed: January 20, 2010.Google Scholar
O'Sullivan, P. A. and O'Donovan, J. T. 1980. Interaction between glyphosate and various herbicides for broadleaved weed control. Weed Res. 20:255260.CrossRefGoogle Scholar
Papendick, R. I. 1998. Farming with the wind: best management practices for controlling wind erosion and air quality on Columbia Plateau croplands. Pullman, WA Washington State University College Agriculture and Home Economics Rep. MISC0208. 204 p.Google Scholar
Prather, T., Ditomaso, J., and Holt, J. 2000. Herbicide Resistance: Definition and Management Strategies. Univ. of California Div. of Agric. and Natural Resources. ANR Publication 8012. Pp. 1013.CrossRefGoogle Scholar
Rasmussen, P. E. and Parton, W. J. 1994. Long-term effects of residue management in wheat-fallow: i. inputs, yield, and soil organic- matter. Soil Sci. Soc. Am. J. 58:523530.CrossRefGoogle Scholar
Rytwo, G. and Tavasi, M. 2003. Addition of a monovalent cationic pesticide to improve efficacy of bipyridyl herbicide in Hulah valley soils. Pest Manag. Sci. 59:12651270.CrossRefGoogle ScholarPubMed
Schillinger, W. F. and Papendick, R. I. 2008. Then and now: 125 years of dryland wheat farming in the inland Pacific Northwest. Agron. J. 100:S166S182.CrossRefGoogle Scholar
Steel, R. G. D., Torrie, J. H., and Dickey, D. A. 1997. Principles and procedures of statistics. 3rd. ed. New York McGraw Hill. Pp. 400428.Google Scholar
Tanpipat, S., Adkins, S. W., Swarbrick, J. T., and Boersma, M. 1997. Influence of selected environmental factors on glyphosate efficacy when applied to awnless barnyard grass (Echinochloa colona (L.) Link). Aust. J. Agric. Res. 48:695702.CrossRefGoogle Scholar
Welker, W. V. Jr. and Smith, C. R. 1972. Effect of repeated annual applications of herbicides in red raspberry plantings. Weed Sci. 2:432433.CrossRefGoogle Scholar
Young, F. L. 2004. Long-term weed management studies in the Pacific Northwest. Weed Sci. 52:897903.CrossRefGoogle Scholar
Young, F. L., Yenish, J. P., Launchbaugh, G. K., McGrew, L. L., and Alldredge, J. R. 2008. Postharvest control of Russian thistle (Salsola tragus) with a reduced herbicide applicator in the Pacific Northwest. Weed Technol. 22:156159.CrossRefGoogle Scholar