Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-22T17:35:28.093Z Has data issue: false hasContentIssue false

Evaluation of Weed Efficacy and Crop Safety of Fluorochloridone in China

Published online by Cambridge University Press:  20 January 2017

Cong Cong
Affiliation:
Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, P.R. China
Zhaozhen Wang
Affiliation:
Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, P.R. China
Rongrong Li
Affiliation:
Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, P.R. China
Lingxu Li
Affiliation:
Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, P.R. China
Dongxin Bu
Affiliation:
Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, P.R. China
Jinxin Wang*
Affiliation:
Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, P.R. China
*
Corresponding author's E-mail: wangjx@sdau.edu.cn.

Abstract

Dinitroaniline and amide herbicides have been continually applied in garlic in China, leading to the change of weed community and dominant weed species. Catchweed bedstraw, shepherd's-purse, and flixweed have become major troublesome weeds. Crop safety of fluorochloridone to 18 crops (at rates of 500 and 1,000 g ai ha−1) and weed efficacy against 35 weeds (at rates of 125 and 250 g ha−1) were determined in greenhouse studies. Visual estimate indicated that fluorochloridone was not safe to many crops, especially cruciferous crops. Among all of the trial crops, garlic was the only crop which was not injured in both PRE and POST application at rate of 500 g ha−1, even when treated with 1,000 g ha−1. Fluorochloridone showed high efficacy against most weeds tested in this experiment when applied PRE, but could not offer a satisfactory control when applied POST. Further rate-response study of fluorochloridone to garlic and six weeds was also investigated. PRE application of fluorochloridone to garlic was safer than POST, and the rates for 10% growth reductions (GR10s) were 1,959 g ha−1 for PRE and 537 g ha−1 for POST. When applied PRE, GR90s of shepherd's-purse and flixweed were 19.2 and 70.3 g ha−1, respectively. Though GR90 of catchweed bedstraw was 541 g ha−1, it could be totally controlled without injuring garlic. On the basis of these results, fluorochloridone has an excellent prospect for weed control in garlic fields.

Los herbicidas dinitrioaniline y amide han sido aplicados continuamente en ajo en China, lo que ha llevado a cambios en la comunidad de malezas y las especies de malezas dominantes. Galium aparine, Capsella bursa-pastoris y Descurainia sophia se han convertido en las mayores malezas problemáticas. En estudios de invernadero, se determinó la seguridad para 18 cultivos de fluorochloridone (a dosis de 500 y 1,000 g ai ha−1) y su eficacia para el control de 35 especies de malezas (a dosis de 125 y 250 g ha−1). Estimados visuales indicaron que fluorochloridone no fue seguro en muchos cultivos, especialmente especies crucíferas. Entre todos los cultivos del estudio, el ajo fue el único cultivo que no fue dañado en aplicaciones PRE y POST con la dosis de 500 g ha−1, e inclusive cuando se trató con 1,000 g ha−1. Fluorochloridone mostró alta eficacia de control en la mayoría de las malezas evaluadas en este experimento cuando se aplicó PRE, pero no pudo ofrecer un control satisfactorio cuando se aplicó POST. También se investigó la respuesta a dosis de fluorochloridone de ajo y seis malezas. La aplicación PRE de fluorochloridone a ajo fue más segura que la POST, y las dosis que causaron reducciones del crecimiento de 10% (GR10s) fueron 1,959 g ha−1 para PRE y 537 g ha−1 para POST. Cuando se aplicó PRE, GR90s de C. bursa-pastoris y D. sophia fueron 19.2 y 70.3 g ha−1, respectivamente. Aunque GR90 para G. aparine fue 541 g ha−1, esta maleza se puedo controlar totalmente sin dañar al ajo. Con base en estos resultados, fluorochloridone tiene un excelente potencial para el control de malezas en campos de ajo.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous (2005) Racer CS® herbicide product label. Makhteshim-Agan Publication. No. L-3904. Pages 3 pGoogle Scholar
Arai, K, Hirase, K, Moriyasu, K, Molin, WT (2006) Herbicidal efficacy of 4-ethyl-3-(3-fluorophenyl)-1-(3-trifluoromethylphenyl)pyrrolidin-2-one (MT-141) in the control of graminaceous and broad-leaved weeds in cotton. J Pestic Sci 31:2934 CrossRefGoogle Scholar
Bartley, MR (1993) Assessment of herbicide selectivity. Pages 5773 in Streibig, JC and Kudsk, P., eds. Herbicide Bioassays. Boca Raton, FL: CRC Press.Google Scholar
Betencourt, E, Duputel, M, Colomb, B, Desclaux, D, and Hinsinger, P (2012) Intercropping promotes the ability of durum wheat and chickpea to increase rhizosphere phosphorus availability in a low P soil. Soil Biol Biochem 46:181190 CrossRefGoogle Scholar
Buhler, DD (1988) Factors influencing fluorochloridone activity in no-till corn (Zea mays) Weed Sci 36:207214 Google Scholar
Devlin, RM, Kisiel, MJ, Kostusiak, AS (1979) Influence of R-40244 on pigment content of wheat and corn. Weed Res 19:5961 CrossRefGoogle Scholar
Friesen, GH (1987) Wild mustard (Sinapis arvensis) control in sunflowers (Helianthus annuus) with fluorochloridone. Weed Sci 35:228230 CrossRefGoogle Scholar
Friesen, GH (1988) Wild mustard, Sinapis arvensis, control in common buckwheat, Fagopyrum esculentum, with desmediphan and fluorochloridone. Weed Technol 2:175178 CrossRefGoogle Scholar
Friesen, GH, Clayton, GC (1986) Common buckwheat (Fagopyrum esculentum) tolerance to herbicides. Weed Sci 34:435439 CrossRefGoogle Scholar
Gao, X, Li, M, Gao, Z, Kong, J, Zhao, W, Zhang, Y (2012) Broadleaf weed control efficacy and potato, cotton safety of fluorochloridone. Agrochemicals (in chinese) 51:683684 Google Scholar
Hao, W, Liang, Y, Zhu, Y, Wu, X, Lin, X, Luo, A (2011) Production efficiency and soil nutrient characteristics in food—vegetable rotation systems. Bull Soil Water Cons (in chinese) 31:4651 Google Scholar
Institute for the control of Agrochemicals, Ministry of Agriculture, P.R. China (2013) http://www.chinapesticide.gov.cn/service/aspx/B3X.aspx?aiid=HEFGT. Accessed: September 26, 2013Google Scholar
Jursík, M, Andr, J, Holec, J, Soukup, J (2011) Efficacy and selectivity of post-emergent application of flumioxazin and oxyfluorfen in sunflower. Plant Soil Environ 57:532539 CrossRefGoogle Scholar
Keeling, JW, Brown, BA, Reed, JD, Dotray, PA (2013) Grain sorghum response to saflufenacil applied preemergence. Crop Prot 46:16 CrossRefGoogle Scholar
Klicova, S, Sebanek, J, Hudeova, M, Vitkova, H, Vlasinova, H (2002) The effect of fluridone and flurochloridone on the incidence of albinism in pea (Pisum sativum) and on the abscission of leaves of privet (Ligustrum vulgare). Rostlinna Vyroba - UZPI 48:255260 Google Scholar
Knezevic, SZ, Streibig, JC, Ritz, C (2007) Utilizing R software package for dose–response studies: the concept and data analysis. Weed Technol 21:840848 CrossRefGoogle Scholar
Lay, M-M, Niland, AM (1983) The herbicidal mode of action of R-40244 and its absorption by plants. Pestic Biochem Physiol 19:337343 CrossRefGoogle Scholar
Li, R, Tian, Y, Xu, Y (2010) Performence and cultivation of Zhongmiansuo 52 in intercropping between cotton and garlic in Jinxiang Shandong. China Cotton (in chinese) 37:2129 Google Scholar
Liu, S (2011) Studies on mechanism of garlic (Allium sativum L.) replanting problem and ameliorative effect of effective microorganisms. Ph.D dissertation. Shandong Agricultural University. 2 pGoogle Scholar
Liu, S, Liu, S, Zhang, Z, Wei, H, Qi, J, Duan, J (2010) Influence of garlic continuous cropping on rhizosphere soil microorganisms and enzyme activities. Sci Agric Sinica (in chinese) 43:10001006 Google Scholar
Martin-Rueda, I, Muñoz-Guerra, LM, Yunta, F, Esteban, E, Tenorio, JL, Lucena, JJ (2007) Tillage and crop rotation effects on barley yield and soil nutrients on a Calciortidic Haploxeralf . Soil Till Res 92:19 CrossRefGoogle Scholar
Murray, MW, Arnold, RN, Gregory, EJ, Smeal, D (1994) Early broadleaf weed control in potato (Solanum tuberosum) with herbicides. Weed Technol 8:165167 CrossRefGoogle Scholar
Nohl-Weiler, C, Hindersmann, U (1986) Several years experience with the herbicide Racer in potatoes. Mit Biol Bund Land- Forst Berlin-Dahlem 232:350351 Google Scholar
Ran, M, Peng, H, Liu, D, Yong, X, Chen, L (2012) Preliminary report of intercropping between garlic and radish. Agric Sci Jiangsu (in chinese) 40:180182 Google Scholar
Ritz, C, Streibig, JC (2005) Bioassay analysis using R. J Stat Softw 12:122 CrossRefGoogle Scholar
Sarker, P, Rahman, M, Das, B (2007) Effect of intercropping with mustard with onion and garlic on aphid population and yield. J Bio-Sci 15:3540 CrossRefGoogle Scholar
Seefeldt, SS, Jensen, JE, Fuerst, EP (1995) Log–logistic analysis of herbicide dose–response relationships. Weed Technol 9:218227 CrossRefGoogle Scholar
Tind, T, Mathiesen, TJ, Jensen, JE, Ritz, C, Streibig, JC (2009) Using a selectivity index to evaluate logarithmic spraying in grass seed crops. Pest Manag Sci 65:12571262 CrossRefGoogle ScholarPubMed
Vrbnicanin, S, Stefanovic, L, Simic, M, Uludag, A (2006) Reproductive capacity of jimsonweed (Datura stramonium L.), redroot pigweed (Amaranthus retroflexus L.) and black nightshade (Solanum nigrum L.) under different herbicide regimes in maize. Res J Agric Biol Sci 2:332335 Google Scholar
Walker, A (1987) Evaluation of a simulation model for prediction of herbicide movement and persistence in soil. Weed Res 27:143152 CrossRefGoogle Scholar
Zhao, ZH (2004) The creation and construction of application technology system of pendimethalin in garlic field. Master dissertation. Shandong Agricultural University. 13 pGoogle Scholar
Zhou, X, Yu, G, Wu, F (2011) Effects of intercropping cucumber with onion or garlic on soil enzyme activities, microbial communities and cucumber yield. Eur J Soil Biol 47:279287 CrossRefGoogle Scholar