Skip to main content Accessibility help
×
Home
Hostname: page-component-55b6f6c457-ln9sz Total loading time: 0.177 Render date: 2021-09-27T10:39:06.866Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

2,4-D and Salt Combinations Affect Glyphosate Phytotoxicity

Published online by Cambridge University Press:  12 June 2017

John D. Nalewaja
Affiliation:
Crop Weed Sci. Dep., N. D. State Univ., Fargo, ND 58105
Robert Matysiak
Affiliation:
Crop Weed Sci. Dep., N. D. State Univ., Fargo, ND 58105

Abstract

Experiments conducted in the greenhouse indicated that 2,4-D antagonism of glyphosate toxicity to wheat was sodium salt = butoxyethyl ester ≥ diethanolamine. Isopropylamine salt of 2,4-D generally was not antagonistic to glyphosate phytotoxicity. Isopropylamine salt of 2,4-D did not influence the antagonism of glyphosate by inorganic salts in the spray carrier. Antagonism of glyphosate toxicity to wheat by 2,4-D increased when sodium bicarbonate, calcium chloride, and ferric sulfate were in the spray carrier water. Isopropylamine alone as an adjuvant enhanced glyphosate toxicity to wheat, and overcame ferric sulfate and sodium bicarbonate antagonism of glyphosate. Diammonium sulfate adjuvant overcame antagonism to glyphosate phytotoxicity from 2,4-D, sodium bicarbonate, and calcium chloride each alone or the salts in combination with 2,4-D. Nonionic surfactants differed in enhancement of glyphosate but none overcame antagonism from salts or 2,4-D.

Type
Research
Copyright
Copyright © 1990 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Buhler, D. D., and Burnside, O. C. 1983. Effect of water quality, carrier volume, and acid on glyphosate phytotoxicity. Weed Sci. 31:163169.Google Scholar
2. Flint, J. L., and Barrett, M. 1989. Antagonism of glyphosate toxicity to johnsongrass by 2,4-D and dicamba. Weed Sci. 37:700705.Google Scholar
3. Hatzios, K. K., and Penner, D. 1985. Interaction of herbicides with other agricultural chemicals in higher plants. Rev. Weed Sci. 1:164.Google Scholar
4. Nalewaja, J. D. and Matysiak, R. 1991. Salt antagonism of glyphosate. Weed Sci. 39:622628.Google Scholar
5. Nalewaja, J. D., Woznica, Z., and Manthey, F. A. 1990. Sodium bicarbonate antagonism of 2,4-D amine. Weed Technol. 4:588591.CrossRefGoogle Scholar
6. O'Donovan, J. T., and O'Sullivan, P. A. 1982. The antagonistic action of 2,4-D and bromoxynil on glyphosate phytotoxicity to barley. Weed Sci. 30:3034.Google Scholar
7. O'Sullivan, P. A., and O'Donovan, J. T. 1980. Interaction between glyphosate and various herbicides for broadleaf weed control. Weed Res. 20:255260.CrossRefGoogle Scholar
8. O'Sullivan, P. A., O'Donovan, J. T., and Hamman, W. M. 1981. Influence of non-ionic surfactants, ammonium sulfate, water quality and spray volume on the phytotoxicity of glyphosate. Can. J. Plant Sci. 61:391400.CrossRefGoogle Scholar
9. Sandberg, C. L., Meggitt, W. F., and Penner, D. 1978. Effect of volume and calcium on glyphosate phytotoxicity. Weed Sci. 26:476479.Google Scholar
10. Sexsmith, J. J. 1953. Nutrient element addition to 2,4-D sprays. Res. Rep. North Cent Weed Control Conf. 10:5758.Google Scholar
11. Shea, P. J., and Tupy, D. R. 1984. Renewal of cation-induced reduction in glyphosate activity with EDTA. Weed Sci. 32:802806.Google Scholar
12. Stahlman, P. W., and Phillips, W. M. 1979. Effect of water quality and spray volume on glyphosate phytotoxicity. Weed Sci. 27:3841.Google Scholar
13. Subramanian, V., and Hoggard, P. E. 1988. Metal complexes of glyphosate. J. Agric. Food Chem. 36:13261329.CrossRefGoogle Scholar
14. Suwunnamer, V., and Parker, C. 1975. Control of Cyperus rotundus with glyphosate: the influence of ammonium sulfate and other additives. Weed Res. 16:1319.CrossRefGoogle Scholar
15. Wills, G. D., and McWhorter, C. G. 1985. Effect of inorganic salts on toxicity and translocation of glyphosate and MSMA in purple nutsedge. Weed Sci. 33:755761.CrossRefGoogle Scholar
19
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

2,4-D and Salt Combinations Affect Glyphosate Phytotoxicity
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

2,4-D and Salt Combinations Affect Glyphosate Phytotoxicity
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

2,4-D and Salt Combinations Affect Glyphosate Phytotoxicity
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *