Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T10:25:36.281Z Has data issue: false hasContentIssue false

Physiological Mechanism for Tall Morningglory (Ipomoea Purpurea) Resistance to DPX-PE350

Published online by Cambridge University Press:  12 June 2017

Shay L. Sunderland
Affiliation:
Dep. Crop Sci., N.C. State Univ.
James D. Burton
Affiliation:
Dep. Hortic. Sci., N.C. State Univ., Raleigh, NC 27695
Harold D. Coble
Affiliation:
Dep. Crop Sci., N.C. State Univ.
Eleanor P. Maness
Affiliation:
Dep. Hortic. Sci., N.C. State Univ., Raleigh, NC 27695

Abstract

Laboratory experiments were conducted to determine the physiological mechanism of tall morningglory resistance to the experimental cotton herbicide DPX-PE350. Tall morningglory, a resistant species, was compared with entireleaf morningglory, a sensitive species, to evaluate inhibition at the site of action, the acetolactate synthase (ALS) enzyme (E.C.4.1.3.18), by DPX-PE350 as well as uptake, translocation, and metabolism of DPX-PE350. No differences were found between species in the concentration required to inhibit the ALS enzyme by 50% (I50), or in uptake and translocation of the herbicide. Tall morningglory metabolized the herbicide more rapidly than did entireleaf morningglory. Tall morningglory contained 3.6 and 1.4 times more metabolites of DPX-PE350 than did entireleaf morningglory 6 and 24 h after treatment, respectively. Tall morningglory produced an O-desmethyl metabolite from the 3,5-dimethoxypyrimidine moiety of DPX PE350 that was not found in entireleaf morningglory. These data suggest that the ability of tall morningglory to more rapidly metabolize DPX-PE350, possibly through the production of the pyrimidinyldesmethyl metabolite, may be the mechanism of resistance to DPX-PE350.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © 1995 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

1. Altom, J. V., Baysinger, J. A., Jacobson, B. D., and Murray, D. S. 1991. Evaluation of DPX-PE350 for weed control in cotton. Proc. South. Weed Sci. Soc. 44:74.Google Scholar
2. Ashton, F. M. 1958. Absorption and translocation of radioactive 2,4-D in sugarcane and bean plants. Weeds. 6:257262.CrossRefGoogle Scholar
3. Beyer, E. M., Duffy, J. J., Hay, J. V., and Schlueter, D. D. 1988. Sulfonylureas. Pages 117189 in Kearney, P. C. and Kaufman, D. D., eds. Herbicides. Vol. 3, Chemistry, Degradation, and Mode of Action. Marcel-Dekker, Inc., New York.Google Scholar
4. Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein using the principle of protein-dye binding. Anal. Biochem. 72:248252.Google Scholar
5. Connelly, J. A., Johnson, M. D., Gronwald, J. W., and Wyse, D. L. 1988. Bentazon metabolism in tolerant and susceptible soybean genotypes. Weed Sci. 36:417423.CrossRefGoogle Scholar
6. Cotterman, J. C. and Saari, L. L. 1992. Rapid metabolic inactivation is the basis for cross-resistance to chlorsulfuron in diclofop-methyl-resistant rigid ryegrass (Lolium rigidum) biotype SR4/84. Pestic. Biochem. Physiol. 43:182192.CrossRefGoogle Scholar
7. Eberlein, C. V., Rosow, K. M., Geadelmann, J. L., and Openshaw, S. J. 1989. Differential tolerance of corn genotypes to DPX-M6316. Weed Sci. 37:651657.CrossRefGoogle Scholar
8. Green, T. H., Minogue, P. J., Brewer, C. H., Glover, G. R., and Gjerstad, D. H. 1992. Absorption and translocation of [14C]glyphosate in four woody plant species. Can. J. For. Res. 22:785789.Google Scholar
9. Hall, J. C., Swanton, C. J., and Devine, M. D. 1992. Physiological and biochemical investigation of the selectivity of ethametsulfuron in commercial brown mustard and wild mustard. Pestic. Biochem. Physiol. 42:188195.Google Scholar
10. Henniger, C. G., Keeling, J. W., and Abernathy, J. R. 1992. Influence of DPX-PE350 application rate and method on cotton yield and fiber quality. Proc. South. Weed Sci. Soc. 45:28.Google Scholar
11. Hoagland, D. R. and Arnon, D. J. 1950. The water culture method for growing plants without soil. Calif. Agric. Exp. Stn. Circ. 347. 32 p.Google Scholar
12. Holshouser, D. L. and Chandler, J. M. 1991. Susceptibility of eight morningglory species to DPX-PE350. Proc. South. Weed Sci. Soc. 44:78.Google Scholar
13. Keeley, P. E. and Thullen, R. J. 1971. Control of nutsedge with organic arsenical herbicides. Weed Sci. 19:601606.Google Scholar
14. LaRossa, R. A. and Schloss, J. V. 1984. The sulfonylurea sulfmeturon methyl is an extremely potent and selective inhibitor of acetolactate synthase in (Salmonella typhimurium). J. Biol. Chem. 259:87538757.CrossRefGoogle ScholarPubMed
15. Mitchell, W. H. 1991. Cotton weed control with DPX-PE350 “a southern prospective.” Proc. South. Weed Sci. Soc. 44:383.Google Scholar
16. Parker, B. P., Marshall, L. C., Burton, J. D., Somers, D. A., Wyse, D. L., Gronwald, J. W., and Gengenbach, B. G. 1990. Dominant mutations causing alterations in acetyl-coenzyme A carboxylase confer tolerance to cyclohexanedione and aryloxyphenoxypropionate herbicides in maize. Proc. Natl. Acad. Sci. 87:71757179.CrossRefGoogle ScholarPubMed
17. Patterson, M. G., Norris, B. E. Jr., and Everest, J. W. 1991. Evaluation of DPX-PE350 for weed control in cotton. Proc. South. Weed Sci. Soc. 44:76.Google Scholar
18. Ray, T. B. 1984. Site of action of chlorsulfuron. Plant Physiol. 75:827831.CrossRefGoogle ScholarPubMed
19. Ray, T. B. 1989. Herbicides as inhibitors of amino acid biosynthesis. Page 119 in Boger, P. and Sandmann, G. eds. Target Sites of Herbicide Action. CRC Press, Boca Raton, FL.Google Scholar
20. Sims, B. D., Guethle, D. R., Mouse, J. L., and Muyonga, C. K. 1991. Effects of DPX-PE350 on weed control, cotton yield, and lint quality. Proc. South. Weed Sci. Soc. 44:75.Google Scholar
21. Singh, B. J., Stidham, M. A., and Shaner, D. L. 1988. Assay of acetohydroxyacid synthase. Anal. Biochem. 171:173179.CrossRefGoogle ScholarPubMed
22. Quimby, P. C. Jr. and Nalewaja, J. D. 1971. Selectivity of dicamba in wheat and wild buckwheat. Weed Sci. 19:598600.Google Scholar
23. Snipes, C. E. and Allen, R. L. 1992. Broadleaf weed control in cotton with DPX-PE350. Proc. South. Weed Sci. Soc. 46:26.Google Scholar
24. Shimabukuro, R. H., Walsh, W. C., and Hoerauf, R. A. 1979. Metabolism and selectivity of diclofop-methyl in wild oat and wheat. J. Agric. Food Chem. 27:615623.Google Scholar
25. Sunderland, S. L. and Coble, H. D. 1994. Differential tolerance of several morningglory species (Ipomoea sp.) to DPX-PE350. Weed Sci. 42:227232.CrossRefGoogle Scholar