Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T09:47:15.532Z Has data issue: false hasContentIssue false

A kochia (Kochia scoparia) biotype resistant to triazine and ALS-inhibiting herbicides

Published online by Cambridge University Press:  12 June 2017

Matthew J. Foes
Affiliation:
Department of Crop Sciences, University of Illinois, Urbana, IL 61801
Lixin Liu
Affiliation:
Department of Crop Sciences, University of Illinois, Urbana, IL 61801
Gerald Vigue
Affiliation:
Department of Agriculture, Western Illinois University, Macomb, IL 61455
Edward W. Stoller
Affiliation:
U.S. Department of Agriculture, Agriculture Research Service, Crop Protection Research Unit, Urbana, IL 61801
Loyd M. Wax
Affiliation:
U.S. Department of Agriculture, Agriculture Research Service, Crop Protection Research Unit, Urbana, IL 61801

Abstract

A kochia biotype from McDonough County, Illinois, was suspected to be resistant to both triazine and acetolactate synthase (ALS)-inhibiting herbicides. We performed greenhouse and laboratory experiments to confirm, quantify, and determine the molecular basis of multiple herbicide resistance in this biotype. Whole-plant phytotoxicity assays confirmed that the biotype was resistant to triazine (atrazine), imidazolinone (imazethapyr), and sulfonylurea (thifensulfuron and chlorsulfuron) herbicides. Relative to a susceptible kochia biotype, resistance to these herbicides ranged from 500- to > 28,000-fold. The kochia biotype from McDonough County also displayed high levels of resistance (2,000- to 9,000-fold) to ALS-inhibiting herbicides in in vivo ALS enzyme assays, indicating that resistance to these herbicides was site-of-action mediated. Results from chlorophyll fluorescence assays indicated that triazine resistance was also site-of-action mediated. Foliar applications of atrazine had little or no effect on photosynthesis in the resistant biotype, even when atrazine concentrations were 108-fold higher than needed to inhibit photosynthesis in the susceptible biotype. A region of the gene encoding the D1 protein of photosystem II and all of the open reading frame of the gene encoding ALS were sequenced and compared between the resistant and susceptible biotypes. Resistance to triazine and ALS-inhibiting herbicides in the kochia biotype from McDonough County was conferred by, respectively, a glycine for serine substitution at residue 264 of the D1 protein and a leucine for tryptophan substitution at residue 570 of ALS.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © 1999 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ahrens, W. H., Arntzen, C. J., and Stoller, E. W. 1981. Chlorophyll fluorescence assay for the determination of triazine resistance. Weed Sci. 29: 316322.CrossRefGoogle Scholar
Bernasconi, P., Woodworth, A. R., Rosen, B. A., Subramanian, M. V., and Siehl, D. L. 1995. A naturally occurring point mutation confers broad range tolerance to herbicides that target acetolactate synthase. J. Biol. Chem. 270: 1738117385.CrossRefGoogle ScholarPubMed
Beyer, E. M., Duffy, M. J., Hay, J. V., and Schlueter, D. D. 1988. Sulfonylureas. Pages 117190 in Kearney, P. C. and Kaufman, D. D., eds. Herbicides: Chemistry, Degradation, and Mode of Action. New York: Marcel-Dekker.Google Scholar
Brown, H. M. 1990. Mode of action, crop selectivity, and soil relations of the sulfonylurea herbicides. Pestic. Sci. 29: 263281.Google Scholar
Devine, M. D., Marles, A. S., and Hall, L. M. 1991. Inhibition of acetolactate synthase in susceptible and resistant biotypes of Stellaria media . Pestic. Sci. 31: 273280.Google Scholar
Doyle, J. J. and Doyle, J. L. 1990. Isolation of plant DNA from fresh tissue. Focus 12: 1315.Google Scholar
Foes, M. J., Liu, L., Tranel, P. J., Wax, L. M., and Stoller, E. W. 1998. A biotype of common waterhemp (Amaranthus rudis) resistant to triazine and ALS herbicides. Weed Sci. 46: 514520.CrossRefGoogle Scholar
Fushimi, T., Nakahira, K., Tagawa, M., and Nawamaki, T. 1997. Herbicide-resistant acetolactate synthase gene. World patent WO97/08327.Google Scholar
Gray, J. A., Stoltenberg, D. E., and Balke, N. E. 1995. Absence of herbicide cross-resistance in two atrazine-resistant velvetleaf (Abutilon theophrasti) biotypes. Weed Sci. 43: 352357.CrossRefGoogle Scholar
Gronwald, J. W. 1994. Resistance to photosystem II inhibiting herbicides. Pages 2760 in Powles, S. B. and Holtum, J.A.M., eds. Herbicide Resistance in Plants: Biology and Biochemistry. Ann Arbor, MI: Lewis.Google Scholar
Gronwald, J. W., Andersen, R. N., and Yee, C. 1989. Atrazine resistance in velvetleaf (Abutilon theophrasti) due to enhanced atrazine detoxification. Pestic. Biochem. Physiol. 34: 149163.CrossRefGoogle Scholar
Guttieri, M. J., Eberlein, C. V., Mallory-Smith, C. A., and Thill, D. C. 1996. Molecular genetics of target-site resistance to acetolactate synthase inhibiting herbicides. Pages 1016 in Brown, T. M., ed. Molecular Genetics and Evolution of Pesticide Resistance. Washington, DC: American Chemical Society.Google Scholar
Guttieri, M. J., Eberlein, C. V., and Thill, D. C. 1995. Diverse mutations in the acetolactate synthase gene confer chlorsulfuron resistance in kochia (Kochia scoparia) biotypes. Weed Sci. 43: 175178.CrossRefGoogle Scholar
Hall, L. M., Holtum, J.A.M., and Powles, S. B. 1994. Mechanisms responsible for cross resistance and multiple resistance. Pages 243261 in Powles, S. B. and Holtum, J.A.M., eds. Herbicide Resistance in Plants: Biology and Biochemistry, Ann Arbor, MI: Lewis.Google Scholar
Hall, L. M. and Stromme, K. 1998. Resistance to ALS inhibitors and quinclorac in false cleavers (Falium spurium). Weed Sci. Soc. Am. Abstr. 38: 11.19.Google Scholar
Hart, S. E., Saunders, J. W., and Penner, D. 1993. Semidominant nature of monogenic sulfonylurea herbicide resistance in sugarbeet (Beta vulgaris). Weed Sci. 41: 317324.Google Scholar
Hattori, J., Brown, D., Mourad, G., Labbe, H., Ouellet, T., Sunohara, G., Rutledge, R., King, J., and Miki, B. 1995. An acetohydroxy acid synthase mutant reveals a single site involved in multiple herbicide resistance. Mol. Gen. Genet. 246: 419425.Google Scholar
Heap, I. M. 1997. International survey of herbicide-resistant weeds. http://www.pioneer.net/∼heapian/.Google Scholar
Hirschberg, J. and McIntosh, L. 1983. Molecular basis of herbicide resistance in Amaranthus hybridus . Science 222: 13461349.CrossRefGoogle ScholarPubMed
Mallory-Smith, C. A., Thill, D. C., and Dial, M. J. 1990. Identification of sulfonylurea herbicide-resistant prickly lettuce (Lactuca serriola). Weed Technol. 4: 163168.Google Scholar
Ryan, G. F. 1970. Resistance of common groundsel to simazine and atrazine. Weed Sci. 18: 614616.CrossRefGoogle Scholar
Saari, L. L., Cotterman, J. C., and Primiani, M. M. 1990. Mechanism of sulfonylurea herbicide resistance in the broadleaf weed, Kochia scoparia . Plant Physiol. 93: 5561.Google Scholar
Saari, L. L., Cotterman, J. C., and Thill, D. C. 1994. Resistance to acetolactate synthase inhibiting herbicides. Pages 83139 in Powles, S. B. and Holtum, J.A.M., eds. Herbicide Resistance in Plants: Biology and Biochemistry. Ann Arbor, MI: Lewis.Google Scholar
Salhoff, C. R. and Martin, A. R. 1985. Kochia scoparia growth response to triazine herbicides. Weed Sci. 34: 4042.Google Scholar
Sambrook, J., Fritsch, E. F., and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual. 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.Google Scholar
Sebastian, S. A., Fader, G. M., Ulrich, J. F., Forney, D. R., and Chaleff, R. S. 1989. Semidominant soybean mutation for resistance to sulfonylurea herbicides. Crop Sci. 29: 14031408.Google Scholar
Shaner, D. L., Anderson, P. C., and Stidham, M. A. 1984. Imidazolinones: potential inhibitors of acetohydroxy acid synthase. Plant Physiol. 76: 545546.Google Scholar
Sprague, C. L., Stoller, E. W., and Wax, L. M. 1997a. Common cocklebur (Xanthium strumarium) resistance to selected ALS-inhibiting herbicides. Weed Technol. 11: 241247.Google Scholar
Sprague, C. L., Stoller, E. W., Wax, L. M., and Horak, M. J. 1997b. Palmer amaranth (Amaranthus palmeri) and common waterhemp (Amaranthus rudis) resistance to selected ALS-inhibiting herbicides. Weed Sci 45: 192197.Google Scholar
Thompson, C. R., Thill, D. C., Mallory-Smith, C. A., and Shafii, B. 1994. Characterization of chlorsulfuron resistant and susceptible kochia (Kochia scoparia). Weed Technol. 8: 470476.CrossRefGoogle Scholar
Woodworth, A. R., Rosen, B. A., and Bernasconi, P. 1996. Broad range resistance to herbicides targeting acetolactate synthase (ALS) in a field isolate of Amaranthus sp . is conferred by a Trp to Leu mutation in ALS gene. Plant Physiol. 111: 1353.Google Scholar
Wright, T. 1997. Development and Characterization of Imidazolinone-Resistant Sugarbeet Somatic Cell Selections. . Michigan State University, East Lansing, MI. 227 p.Google Scholar
Wright, T. R., Bascomb, N. F., Sturner, S. F., and Penner, D. 1998. Biochemical mechanism and molecular basis for ALS-inhibiting herbicide resistance in sugarbeet (Beta vulgaris) somatic cell selections. Weed Sci. 46: 1323.CrossRefGoogle Scholar
Wright, T. R. and Penner, D. 1998a. Classification of acetolactate synthase (ALS) resistance mutations. Weed Sci. Soc. Am. Abstr. 38: 11.15.Google Scholar
Wright, T. R. and Penner, D. 1998b. Corn (Zea mays) acetolactate synthase sensitivity to four classes of ALS-inhibiting herbicides. Weed Sci. 46: 812.Google Scholar