Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-24T11:17:05.463Z Has data issue: false hasContentIssue false

Hybridization in a Commercial Production Field between Imidazolinone-Resistant Winter Wheat and Jointed Goatgrass (Aegilops cylindrica) Results in Pollen-Mediated Gene Flow of Imi1

Published online by Cambridge University Press:  20 January 2017

Alejandro Perez-Jones
Affiliation:
Department of Crop and Soil Science, Oregon State University, 107 Crop Science Building, Corvallis, OR 97331
Bianca A. B. Martins
Affiliation:
Department of Crop and Soil Science, Oregon State University, 107 Crop Science Building, Corvallis, OR 97331
Carol A. Mallory-Smith*
Affiliation:
Department of Crop and Soil Science, Oregon State University, 107 Crop Science Building, Corvallis, OR 97331
*
Corresponding author's E-mail: carol.mallory-smith@oregonstate.edu

Abstract

Imidazolinone-resistant (IR) winter wheat allows selective control of jointed goatgrass with the herbicide imazamox. However, the spontaneous hybridization between jointed goatgrass and IR winter wheat threatens the value of the IR technology. The objectives of this study were to determine if F1 hybrids collected in a commercial production field under IR winter wheat–fallow rotation in Oregon and their first-backcross progeny (BC1) carried the Imi1 gene and were resistant to imazamox, and to analyze the parentage of F1 and BC1 plants. The average seed set of the F1 spikes was 3.3%, and the average germination of BC1 seed was 52%. All F1 and BC1 plants tested carried Imi1. Jointed goatgrass plant mortality was 100% when treated with imazamox at 0.053 kg ai ha−1, compared to 0% for IR winter wheat and BC1 progeny. All F1 plants had jointed goatgrass as the maternal parent; whereas, most BC1 plants (85.7%) were produced with IR winter wheat as the paternal backcross parent. Although the backcrossing of F1 hybrids with jointed goatgrass is very low, it demonstrates the potential for introgression of Imi1 from IR winter wheat into jointed goatgrass under natural field conditions.

Type
Weed Biology and Ecology
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Al-Ahmad, H., Galili, S., and Gressel, J. 2004. Tandem constructs to mitigate transgene persistence: tobacco as a model. Mol. Ecol. 13:697710.Google Scholar
Anderson, J. A., Matthiesen, L., and Hegstad, J. 2004. Resistance to an imidazolinone herbicide is conferred by a gene on chromosome 6DL in the wheat line cv. 9804. Weed Sci. 52:8390.Google Scholar
Anderson, R. L. 1993. Jointed goatgrass (Aegilops cylindrica) ecology and interference in winter wheat. Weed Sci. 41:388393.Google Scholar
Ball, D. A., Young, F. L., and Ogg, A. G. Jr. 1999. Selective control of jointed goatgrass (Aegilops cylindrica) with imazamox in herbicide-resistant wheat. Weed Technol. 13:7782.Google Scholar
Brûlé-Babel, A., Willenborg, C. J., Friesen, L. F., and Van Acker, R. C. 2006. Modeling the influence of gene flow and selection pressure on the frequency of a GE herbicide-tolerant trait in non-GE wheat and wheat volunteers. Crop Sci. 46:17041710.Google Scholar
Corbett, C. A. L. and Tardif, F. J. 2006. Detection of resistance to acetolactate synthase inhibitors in weeds with emphasis on DNA-based techniques: a review. Pest Manag. Sci. 62:584597.Google Scholar
Dale, P. J., Clarke, B., and Fontes, E. M. G. 2002. Potential for the environmental impact of transgenic crops. Nat. Biotechnol. 20:567574.Google Scholar
Daniell, H. 2002. Molecular strategies for gene containment in transgenic crops. Nat. Biotechnol. 20:581586.Google Scholar
Dewey, S. 1996. Jointed goatgrass: an overview of the problem. Pages 12. In Jenks, B. ed. Proceedings of the Pacific Northwest Jointed Goatgrass Conference. Lincoln, NE University of Nebraska.Google Scholar
Donald, W. W. and Ogg, A. G. Jr. 1991. Biology and control of jointed goatgrass (Aegilops cylindrica), a review. Weed Technol. 5:317.Google Scholar
Ellstrand, N. C., Prentice, H. C., and Hancock, J. F. 1999. Gene flow and introgression from domesticated plants into their wild relatives. Annu. Rev. Ecol. Syst. 30:539563.Google Scholar
[FAO] Food and Agriculture Organization of the United Nations 2010. FAOSTAT. http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor. Accessed February 15, 2010.Google Scholar
Feldman, M. and Sears, E. R. 1981. The wild gene resources of wheat. Sci. Am. 244:102112.CrossRefGoogle Scholar
Gaines, T., Byrne, P., Westra, P., Nissen, S. J., Henry, W. B., Shaner, D. L., and Chapman, P. L. 2008. Jointed goatgrass (Aegilops cylindrica) by imidazolinone-resistant wheat hybridization under field conditions. Weed Sci. 56:3236.Google Scholar
Gandhi, H. T., Mallory-Smith, C. A., Watson, C. J. W., Vales, M. I., Zemetra, R. S., and Riera-Lizarazu, O. 2006. Hybridization between wheat and jointed goatgrass (Aegilops cylindrica) under field conditions. Weed Sci. 54:10731079.Google Scholar
Gandhi, H. T., Vales, M. I., Watson, C. J. W., Mallory-Smith, C. A., Mori, N., Rehman, M., Zemetra, R. S., and Riera-Lizarazu, O. 2005. Chloroplast and nuclear microsatellite analysis of Aegilops cylindrica . Theor. Appl. Genet. 111:561572.Google Scholar
Gressel, J. 1999. Tandem constructs: preventing the rise of superweeds. Trends Biotechnol. 17:361366.Google Scholar
Guadagnuolo, R., Savova-Bianchi, D., and Felber, F. 2001. Gene flow from wheat (Triticum aestivum L.) to jointed goatgrass (Aegilops cylindrica Host.), as revealed by RADP and microsatellite markers. Theor. Appl. Genet. 103:18.Google Scholar
Hanson, B. D., Mallory-Smith, C. A., Price, W. J., Shafii, B., Thill, D. C., and Zemetra, R. S. 2005. Interspecific hybridization: potential for movement of herbicide resistance from wheat to jointed goatgrass. Weed Technol. 19:674682.Google Scholar
Hanson, B. D., Shaner, D. L., Westra, P., and Nissen, S. J. 2006. Response of selected hard red wheat lines to imazamox as affected by number and location of resistance genes, parental background, and growth habit. Crop Sci. 46:12061211.Google Scholar
Hegde, S. G. and Waines, J. G. 2004. Hybridization and introgression between bread wheat and wild and weedy relatives in North America. Crop Sci. 44:11451155.Google Scholar
Ishii, T., Mori, N., and Oghihara, Y. 2001. Evaluation of allelic diversity at microsatellite loci among common wheat and its ancestral species. Theor. Appl. Genet. 103:896904.Google Scholar
Johnson, B. L. 1967. Confirmation of the genome donors of Aegilops cylindrica . Nature. 216:859862.Google Scholar
Kimber, G. and Sears, E. R. 1987. Evolution in the genus Triticum and the origin of cultivated wheat. Pages 154164. In Heyne, E. G. ed. Wheat and Wheat Improvement. 2nd ed. Madison, WI American Society of Agronomy.Google Scholar
Kimber, G. and Zhao, Y. H. 1983. The D genome of the Triticeae. Can. J. Genet. Cytol. 25:581589.Google Scholar
Knezevic, S. Z., Streibig, J. C., and Ritz, C. 2007. Utilizing R software package for dose-response studies: the concept and data analysis. Weed Technol. 21:840848.Google Scholar
Kroiss, L. J., Tempalli, P., Hansen, J. H., Vales, M. I., Riera-Lizarazu, O., Zemetra, R. S., and Mallory-Smith, C. A. 2004. Marker assessed retention of wheat chromatin in wheat (Triticum aestivum) by jointed goatgrass (Aegilops cylindrica) backcross derivatives. Crop Sci. 44:14291433.Google Scholar
Linc, G., Friebe, B., Kynast, R., Molnar-Lang, M., Kozegi, B., Sutka, J., and Gill, B. 1999. Molecular cytogenetics analysis of Aegilops cylindrica . Genome. 42:497503.Google Scholar
Loureiro, I., Escorial, C., Garcia Baudin, J. M., and Chueca, M. C. 2008. Hybridization between wheat and the wild species Aegilops geniculata and hybrid fertility for potential herbicide resistance transfer. Weed Res. 48:561570.Google Scholar
Morrison, L. A., Crémieux, L., and Mallory-Smith, C. A. 2002a. Infestations of jointed goatgrass (Aegilops cylindrica) and its hybrids with wheat in Oregon wheat fields. Weed Sci. 50:737747.Google Scholar
Morrison, L. A., Riera-Lizarazu, O., Cremieux, L., and Mallory-Smith, C. A. 2002b. Jointed goatgrass (Aegilops cylindrica Host) × wheat (Triticum aestivum L.) hybrids: hybridization dynamics in Oregon wheat fields. Crop Sci. 42:18631872.Google Scholar
Newhouse, K. E., Smith, W. A., Starrett, M. A., Schaefer, T. J., and Singh, B. K. 1992. Tolerance to imidazolinone herbicides in wheat. Plant Physiol. 100:882886.Google Scholar
Ogg, A. G. Jr. 1993. Jointed goatgrass survey. Magnitude and scope of the problem. Pages 612. In Westra, P. and Anderson, R. eds. Jointed Goatgrass: A Threat to U.S. Winter Wheat. Fort Collins, CO Colorado State University.Google Scholar
Perez-Jones, A., Mallory-Smith, C. A., Hansen, J. L., and Zemetra, R. S. 2006a. Introgression of an imidazolinone-resistance gene from winter wheat (Triticum aestivum L.) into jointed goatgrass (Aegilops cylindrica Host). Theor. Appl. Genet. 114:177186.Google Scholar
Perez-Jones, A., Mallory-Smith, C. A., Riera-Lizarazu, O., Watson, C. J. W., Wang, Z., Rehman, M., and Zemetra, R. S. 2006b. Introgression of a strawbreaker foot rot resistance gene from winter wheat into jointed goatgrass. Crop Sci. 46:21552160.Google Scholar
Pestova, E., Korzun, V., Goncharov, N. P., Hammer, K., Ganal, M. W., and Röder, M. S. 2000. Microsatellite analysis of Aegilops tauschii germplasm. Theor. Appl. Genet. 101:100106.Google Scholar
Pozniak, C. J., Birk, I. T., O'Donoughue, L. S., Ménard, C., Hucl, P. J., and Singh, B. K. 2004. Physiological and molecular characterization of mutation-derived imidazolinone resistance in spring wheat. Crop Sci. 44:14341443.Google Scholar
Pozniak, C. J. and Hucl, P. J. 2004. Genetic analysis of imidazolinone resistance in mutation-derived lines of common wheat. Crop Sci. 44:2330.Google Scholar
R Development Core Team 2006. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.r-project.org.Google Scholar
Rehman, M., Hansen, J., Brown, J., Price, W., Zemetra, R. S., and Mallory-Smith, C. A. 2006. Effect of wheat genotype on the phenotype of wheat × jointed goatgrass (Aegilops cylindrica) hybrids. Weed Sci. 54:690694.Google Scholar
Röder, M. S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M. H., Leroy, P., and Ganal, M. W. 1998. A microsatellite map of wheat. Genetics. 149:20072023.Google Scholar
Schoenenberger, N., Felber, F., Savova-Bianchi, D., and Guadagnuolo, R. 2005. Introgression of wheat DNA markers from A, B and D genomes in early generation progeny of Aegilops cylindrica Host × Triticum aestivum L. hybrids. Theor. Appl. Genet. 111:13381346.Google Scholar
Schoenenberger, N., Guadagnuolo, R., Savova-Bianchi, D., Küpfer, P., and Felber, F. 2006. Molecular analysis, cytogenetics and fertility of introgression lines from transgenic wheat to Aegilops cylindrica Host. Genetics. 174:20612070.Google Scholar
Seefeldt, S. S., Zemetra, R. S., Young, F. L., and Jones, S. S. 1998. Production of herbicide-resistant jointed goatgrass (Aegilops cylindrica) × wheat (Triticum aestivum) hybrids in the field by natural hybridization. Weed Sci. 46:632634.Google Scholar
Shaner, D. L. and Singh, B. K. 1997. Acetohydroxyacid synthase inhibitors. Pages 69110. In Roe, R. M., Burton, J. D., and Kuhr, R. J. eds. Herbicide Activity: Toxicology, Biochemistry and Molecular Biology. Amsterdam IOS Press.Google Scholar
Snyder, J., Mallory-Smith, C. A., Balter, S., Hansen, J., and Zemetra, R. S. 2000. Seed production on Triticum aestivum by Aegilops cylindrica hybrids in the field. Weed Sci. 48:588593.Google Scholar
Sommer, S. S., Groszbar, A. R., and Bottema, C. D. 1992. PCR amplification of specific alleles (PASA) is a general method for rapidly detecting known single base-pair changes. Biotechniques. 12:8287.Google Scholar
Souza, E. J., Lazar, M. D., Guttieri, M. J., Thill, D., and Rauch, T. 2006. Registration of ‘Idaho 587’ wheat. Crop Sci. 46:13871389.Google Scholar
Stewart, C. N. Jr., Halfhill, M. D., and Warwick, S. I. 2003. Transgene introgression from genetically modified crops to their wild relatives. Nat. Rev. Genet. 4:806817.Google Scholar
Stone, A. E. and Peeper, T. F. 2004. Characterizing jointed goatgrass (Aegilops cylindrica) × winter wheat hybrids in Oklahoma. Weed Sci. 52:742745.Google Scholar
Streibig, J. C., Rudemo, M., and Jensen, J. E. 1993. Dose–response curves and statistical models. Pages 2956. In Streibig, J. C. and Kudsk, P. eds. Herbicide Bioassays. Boca Raton, FL CRC Press.Google Scholar
Tan, S., Evans, R. R., Dahmer, M. L., Singh, B. K., and Shaner, D. L. 2005. Imidazolinone-tolerant crops: history, current status and future. Pest Manag. Sci. 61:246257.Google Scholar
Umbarger, H. E. 1978. Amino acid biosynthesis and its regulation. Ann. Rev. Biochem. 47:533606.Google Scholar
Waines, J. G. and Hegde, S. G. 2003. Intraspecific gene flow in bread wheat as affected by reproductive biology and pollination ecology of wheat flowers. Crop Sci. 43:451463.Google Scholar
Wang, G., Miyashita, N. T., and Tsunewaki, K. 1997. Plasmon analyses of Triticum (wheat) and Aegilops: PCR-single-stand conformational polymorphism (PCR-SSCP) analyses of organellar DNAs. Proc. Nat. Acad. Sci. USA. 94:1457014577.Google Scholar
Wang, Z. N., Hang, A., Hansen, J., Burton, C., Mallory-Smith, C. A., and Zemetra, R. S. 2000. Visualization of A- and B-genome chromosomes in wheat (Triticum aestivum L.) × jointed goatgrass (Aegilops cylindrica Host) backcross progenies. Genome. 43:10381044.Google Scholar
Wang, Z. N., Zemetra, R. S., Hansen, J., Hang, A., Mallory-Smith, C. A., and Burton, C. 2002. Determination of the paternity of wheat (Triticum aestivum L) × jointed goatgrass (Aegilops cylindrica Host) BC1 plants by using genomic in situ hybridization (GISH) technique. Crop Sci. 42:939943.Google Scholar
Wang, Z. N., Zemetra, R. S., Hansen, J., and Mallory-Smith, C. A. 2001. The fertility of wheat × jointed goatgrass hybrids and its backcross progenies. Weed Sci. 49:340345.Google Scholar
Weissmann, S., Feldman, M., and Gressel, J. 2005. Sequence evidence for sporadic intergeneric DNA introgression from wheat into a wild Aegilops species. Mol. Biol. Evol. 22:20552062.Google Scholar
Weissmann, S., Feldman, M., and Gressel, J. 2008. Hypothesis: transgene establishment in wild relatives of wheat can be prevented by utilizing the Ph1 gene as a senso stricto chaperon to prevent homoeologous recombination. Plant Sci. 175:410414.Google Scholar
Zaharieva, M. and Monneveux, P. 2006. Spontaneous hybridization between bread wheat (Triticum aestivum L.) and its wild relatives in Europe. Crop Sci. 46:512527.Google Scholar
Zemetra, R. S., Hansen, J., and Mallory-Smith, C. A. 1998. Potential for gene transfer between wheat (Triticum aestivum) and jointed goatgrass (Aegilops cylindrica). Weed Sci. 46:313317.Google Scholar
Zhao, C., Ascenzi, R., and Singh; BASF Aktiengesellschaft, B. K. 2005. Methods and compositions for analyzing AHASL genes. Inventors: Zhao, C., Bijay, R., and Singh, K. Assignee: BASF AG. U.S. patent WO2005093093.Google Scholar