Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-16T14:09:30.726Z Has data issue: false hasContentIssue false

Diclofop and MCPA Influence on Coleoptile Growth

Published online by Cambridge University Press:  12 June 2017

Wayne A. Olson
Affiliation:
Dep. Agron., North Dakota State Univ., Fargo, ND 58105
John D. Nalewaja
Affiliation:
Dep. Agron., North Dakota State Univ., Fargo, ND 58105
Glen L. Schroeder
Affiliation:
Mobay Chem. Corp., 1233 4th St. N., Fargo, ND 58102
Murray E. Duysen
Affiliation:
Dep. Bot., North Dakota State Univ., Fargo, ND 58105

Abstract

Experiments were conducted using the Avena coleoptile straight-growth test to determine the influence of diclofop {2-[4-(2,4-diclorophenoxy)phenoxy] propanoic acid}, as the acid or methyl ester, and MCPA {[(4-chloro-o-tolyl)oxy] acetic acid} on coleoptile growth of several species. Diclofop ester was a three-fold stronger inhibitor of oat (Avena sativa L. ‘Terra’) coleoptile growth than the free acid. The concentration of diclofop ester needed to inhibit 50% of the oat coleoptile growth was not influenced by IAA (indole-3-acetic acid) concentration. Oat coleoptile growth in the presence of 5 μM IAA plus 5 μM diclofop ester increased for 2 h after treatment and then decreased, so that the coleoptile length was less at the end of the 24-h assay period than at the beginning of the diclofop-ester treatment. Diclofop ester inhibited the coleoptile growth of wild oat (Avena fatua L.) > oat > wheat (Triticum aestivum L. ‘Era’) > corn (Zea mays L. inbred ‘A-239’) > corn inbred ‘CI-66’. MCPA added to the treatment solution did not overcome oat coleoptile growth inhibition from diclofop ester or acid.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Andersen, R. N. 1976. Control of volunteer corn and giant foxtail in soybeans. Weed Sci. 24:253256.CrossRefGoogle Scholar
2. Andersen, R. N. 1976. Response of monocotyledons to HOE-22870 and HOE-23408. Weed Sci. 24:266269.Google Scholar
3. Andreev, G. K. and Amrhein, N. 1976. Mechanism of action of the herbicide 2-chloro-3(4-chlorophenyl)propanoate and its methyl ester: Interaction with cell responses mediated by auxin. Physiol. Plant 37:175182.Google Scholar
4. Brezeanu, A. G., Davis, D. G., and Shimabukuro, R. H. 1976. Ultrastructural effects and translocation of methyl-2-[4-(2,4-dichlorophenoxy)phenoxy] propanoate in wheat (Triticum aestivum) and wild oat (Avena fatua . Can. J. Bot. 54:20382048.Google Scholar
5. Fletcher, R. A. and Drexler, D. M. 1980. Interaction of diclofop methyl and 2,4-D in cultivated oats (Avena sativa . Weed Sci. 28:363365.Google Scholar
6. Friesen, H. A., O'Sullivan, P. A., and Vanden Born, W. H. 1976. HOE-23408, a new selective herbicide for wild oats and green foxtail in wheat and barley. Can. J. Plant Sci. 56:567578.Google Scholar
7. Galston, A. W. and Hand, M. E. 1949. Studies on the physiology of light action. I. Auxin and the light inhibition of growth. Am. J. Bot. 36:8594.Google Scholar
8. Keitt, G. W. Jr. and Baker, R. A. 1966. Auxin activity of substituted benzoic acids and their effect on polar auxin transport Plant Physiol. 41:15611569.Google Scholar
9. Leopold, A. C. 1960. Selection of auxins. Pages 282290 in Auxins and Plant Growth. University of California Press, Los Angeles.Google Scholar
10. McRae, D. H. and Bonner, J. 1952. Diortho substituted phenoxyacetic acids as antiauxins. Plant Physiol. 39:834838.Google Scholar
11. McRae, D. H. and Bonner, J. 1953. Chemical structure and anti-auxin activity. Physiol. Plant 6:485510.Google Scholar
12. Ostle, B. 1963. Inverse prediction in simple linear regression. Pages 176177 in Statistics in Research. Iowa State Univ. Press, Ames.Google Scholar
13. Overbeek, J. V., Blondeau, R., and Horne, V. 1951. Transcinnamic acid as an anti-auxin. Am. J. Bot. 38:589595.Google Scholar
14. Qureshi, F. A. and Vanden Born, W. H. 1979. Interaction of diclofop methyl and MCPA on wild oats (Avena fatua . Weed Sci. 27:202205.Google Scholar
15. Shimabukuro, M. A., Shimabukuro, R. H., Nord, W. S., and Hoerauf, R. A. 1978. Physiological effects of methyl-2-[4(2,4-dichlorophenoxy)phenoxy] propanoate on oat, wild oat, and wheat. Pestic. Biochem. Physiol. 8:199207.Google Scholar
16. Sirois, J. C. 1966. Studies on growth regulators. I. Improved Avena coleoptile elongation test for auxin. Plant Physiol. 41: 13081312.CrossRefGoogle ScholarPubMed
17. Todd, B. G. and Stobbe, E. H. 1977. Selectivity of diclofop methyl among wheat, barley, wild oat (Avena fatua) and green foxtail (Setaria viridis . Weed Sci. 25:382385.Google Scholar
18. Todd, B. G. and Stobbe, E. H. 1980. The basis of the antagonistic effect of 2,4-D on diclofop methyl toxicity to wild oats (Avena fatua . Weed Sci. 28:371377.CrossRefGoogle Scholar
19. Waygood, E. L., Oaks, A., and Maclachlan, G. A. 1956. On the mechanism of indoleacetic acid oxidation by wheat leaf enzymes. Can. J. Bot. 34:5459.Google Scholar