Skip to main content Accessibility help
×
Home
Hostname: page-component-564cf476b6-qq8pn Total loading time: 0.176 Render date: 2021-06-20T20:45:01.382Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Article contents

Chlorimuron Absorption by Excised Velvetleaf (Abutilon theophrasti) Roots

Published online by Cambridge University Press:  12 June 2017

Ujjanagouda B. Nandihalli
Affiliation:
Dep. Plant and Soil Sci., Univ. Massachusetts, Amherst, MA 01003
Prasanta C. Bhowmik
Affiliation:
Dep. Plant and Soil Sci., Univ. Massachusetts, Amherst, MA 01003

Abstract

Absorption of ethyl ester of chlorimuron by excised velvetleaf root tissue was investigated. Chlorimuron uptake increased rapidly, reaching a maximum after 2 h. After 4 h, however, a portion of the previously absorbed herbicide was lost to the external solution. The temperature coefficient (Q10) for chlorimuron absorption between 15 and 25 C was 1.9. The herbicide uptake was severely inhibited by metabolic inhibitors, DNP and KCN, and by anaerobic conditions (anoxia). Results of permeation experiments indicated that chlorimuron did not accumulate in the root tissue against a concentration gradient, and Ci/Co reached 1.0 after a 2-h permeation period. Chlorimuron efflux was continuous and after 2 h of washing the tissue in a herbicide-free solution, 90% of the previously absorbed herbicide was removed, suggesting that its accumulation in the tissue was reversible.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © 1989 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Ashton, F. M. and Crafts, A. S. 1981. Mode of Action of Herbicides. Pages 2039. 2nd ed. John Wiley and Sons, New York.Google Scholar
2. Barrett, M. and Ashton, F. M. 1983. Napropamide fluxes in corn (Zea mays) root tissue. Weed Sci. 31:4348.Google Scholar
3. Brown, H. M. and Neighbors, S. M. 1987. Soybean metabolism of chlorimuron ethyl: Physiological basis for soybean selectivity. Pestic. Biochem. Physiol. 29:112120.CrossRefGoogle Scholar
4. Bruno, G. A. and Christian, J. E. 1961. Determination of carbon-14 in aqueous bicarbonate solutions by liquid scintillation techniques: Application to biological fluids. Anal. Chem. 33:12161218.CrossRefGoogle Scholar
5. Darmstadt, G. L., Balke, N. E., and Schrader, L. E. 1983. Use of corn root protoplasts in herbicide absorption studies. Pestic. Biochem. Physiol. 19:172183.CrossRefGoogle Scholar
6. Devine, M. D., Bestman, H. D., and Vanden Born, W. H. 1987. Uptake and accumulation of the herbicide chlorsulfuron and clopyralid in excised pea root tissue. Plant Physiol. 85:8286.CrossRefGoogle ScholarPubMed
7. Donaldson, T. W., Bayer, D. E., and Leonard, O. A. 1973. Absorption of 2,4-dichlorophenoxyacetic acid and 3-(p-chlorophenyl)-1,1-dimethylurea (monuron) by barley roots. Plant Physiol. 52:638645.CrossRefGoogle ScholarPubMed
8. Goldsmith, M.H.M. 1977. The polar transport of auxin. Annu. Rev. Plant Physiol. 28:439478.CrossRefGoogle Scholar
9. Hodges, T. K. 1973. Ion absorption by plant roots. Adv. Agron. 25:163207.CrossRefGoogle Scholar
10. Mersie, W. and Foy, C. L. 1987. Influence of pH on the absorption of chlorsulfuron by leaves and excised roots of velvetleaf (Abutilon theophrasti). Weed Sci. 35:1114.Google Scholar
11. Mersie, W. and Singh, M. 1987. Norflurazon absorption by excised velvetleaf (Abutilon theophrasti) roots. Weed Sci. 35:303307.Google Scholar
12. Minocha, S. C. and Nissen, P. 1985. Uptake of 2,4-dichlorophenoxyacetic acid and indole acetic acid in tuber slices of Jerusalem artichoke and potato. J. Plant Physiol. 120:351362.CrossRefGoogle Scholar
13. Nobel, P. S. 1983. Biophysical Plant Physiology and Ecology. Page 142. W. H. Freeman and Co., San Francisco.Google Scholar
14. Orwick, P. L., Schreiber, M. M., and Hodges, T. K. 1976. Absorption and efflux of chloro-s-triazines by Setaria roots. Weed Res. 16:139144.CrossRefGoogle Scholar
15. Peterson, C. A. and Edgington, L. V. 1976. Entry of pesticides into plant symplast as measured by their loss from an ambient solution. Pestic. Sci. 7:483491.CrossRefGoogle Scholar
16. Ploeg, H. L., Wolf, A. D., and Leavitt, J.R.C. 1984. DPXF-6025: A new selective soybean herbicide. Abstr. Weed Sci. Soc. Am. Page 18.Google Scholar
17. Prasad, R. and Blackman, G. E. 1965. Studies on the physiological action of 2,2-dichloropropionic acid. III. Factors affecting the level of accumulation and mode of action. J. Exp. Bot. 16:545568.CrossRefGoogle Scholar
18. Price, T. P. and Balke, N. E. 1982. Characterization of rapid atrazine absorption by excised velvetleaf (Abutilon theophrasti) roots. Weed Sci. 30:633639.Google Scholar
19. Price, T. P. and Balke, N. E. 1983. Characterization of atrazine accumulation by excised velvetleaf (Abutilon theophrasti) roots. Weed Sci. 31:1419.Google Scholar
20. Reddy, K. N. 1987. Toxicity, absorption, translocation, and metabolism of soil and foliar applied chlorimuron in yellow and purple nutsedge. Ph.D. Dissertation. The Ohio State Univ., Columbus. 95 pp.Google Scholar
21. Reider, M. L. and Shaner, D. L. 1986. Uptake of imidazolinones into soybean leaf discs. Abstr. Weed Sci. Soc. Am. Pages 8788.Google Scholar
6
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Chlorimuron Absorption by Excised Velvetleaf (Abutilon theophrasti) Roots
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Chlorimuron Absorption by Excised Velvetleaf (Abutilon theophrasti) Roots
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Chlorimuron Absorption by Excised Velvetleaf (Abutilon theophrasti) Roots
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *