Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-22T13:08:58.954Z Has data issue: false hasContentIssue false

Intrinsic properties and functional circuitry of the AII amacrine cell

Published online by Cambridge University Press:  06 February 2012

JONATHAN B. DEMB*
Affiliation:
Departments of Ophthalmology & Visual Sciences and Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
JOSHUA H. SINGER*
Affiliation:
Department of Biology, University of Maryland, College Park, Maryland
*
*Address correspondence and reprint requests to: Jonathan B. Demb. E-mail: jonathan.demb@yale.edu or Joshua H. Singer. E-mail: jhsinger@umd.edu
*Address correspondence and reprint requests to: Jonathan B. Demb. E-mail: jonathan.demb@yale.edu or Joshua H. Singer. E-mail: jhsinger@umd.edu

Abstract

Amacrine cells represent the most diverse class of retinal neuron, comprising dozens of distinct cell types. Each type exhibits a unique morphology and generates specific visual computations through its synapses with a subset of excitatory interneurons (bipolar cells), other amacrine cells, and output neurons (ganglion cells). Here, we review the intrinsic and network properties that underlie the function of the most common amacrine cell in the mammalian retina, the AII amacrine cell. The AII connects rod and cone photoreceptor pathways, forming an essential link in the circuit for rod-mediated (scotopic) vision. As such, the AII has become known as the rod–amacrine cell. We, however, now understand that AII function extends to cone-mediated (photopic) vision, and AII function in scotopic and photopic conditions utilizes the same underlying circuit: AIIs are electrically coupled to each other and to the terminals of some types of ON cone bipolar cells. The direction of signal flow, however, varies with illumination. Under photopic conditions, the AII network constitutes a crossover inhibition pathway that allows ON signals to inhibit OFF ganglion cells and contributes to motion sensitivity in certain ganglion cell types. We discuss how the AII’s combination of intrinsic and network properties accounts for its unique role in visual processing.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alpern, M. (1965). Rod-cone independence in the after-flash effect. The Journal of Physiology 176, 462472.CrossRefGoogle ScholarPubMed
Anderson, J.R., Jones, B.W., Watt, C.B., Shaw, M.V., Yang, J.H., Demill, D., Lauritzen, J.S., Lin, Y., Rapp, K.D., Mastronarde, D., Koshevoy, P., Grimm, B., Tasdizen, T., Whitaker, R. & Marc, R.E. (2011). Exploring the retinal connectome. Molecular Vision 17, 355379.Google ScholarPubMed
Barlow, H.B., Fitzhugh, R. & Kuffler, S.W. (1957). Dark adaptation, absolute threshold and Purkinje shift in single units of the cat’s retina. The Journal of Physiology 137, 327337.CrossRefGoogle ScholarPubMed
Barlow, H.B., Levick, W.R. & Yoon, M. (1971). Responses to single quanta of light in retinal ganglion cells of the cat. Vision Research (Suppl. 3), 87101.CrossRefGoogle ScholarPubMed
Baylor, D.A., Nunn, B.J. & Schnapf, J.L. (1984). The photocurrent, noise and spectral sensitivity of rods of the monkey Macaca fascicularis. The Journal of Physiology 357, 575607.CrossRefGoogle ScholarPubMed
Beaudoin, D.L., Manookin, M.B. & Demb, J.B. (2008). Distinct expressions of contrast gain control in parallel synaptic pathways converging on a retinal ganglion cell. The Journal of Physiology 586, 54875502.CrossRefGoogle ScholarPubMed
Bloomfield, S.A. & Dacheux, R.F. (2001). Rod vision: Pathways and processing in the mammalian retina. Progress in Retinal & Eye Research 20, 351384.CrossRefGoogle ScholarPubMed
Bloomfield, S.A. & Xin, D. (2000). Surround inhibition of mammalian AII amacrine cells is generated in the proximal retina. The Journal of Physiology 523(Pt 3), 771783.CrossRefGoogle ScholarPubMed
Bloomfield, S.A., Xin, D. & Osborne, T. (1997). Light-induced modulation of coupling between AII amacrine cells in the rabbit retina. Visual Neuroscience 14, 565576.CrossRefGoogle ScholarPubMed
Boos, R., Schneider, H. & Wässle, H. (1993). Voltage- and transmitter-gated currents of all-amacrine cells in a slice preparation of the rat retina. The Journal of Neuroscience 13, 28742888.CrossRefGoogle Scholar
Boycott, B.B. & Dowling, J.E. (1969). Organization of the primate retina: Light microscopy. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 255, 105.Google Scholar
Boycott, B.B. & Kolb, H. (1973). The connections between bipolar cells and photoreceptors in the retina of the domestic cat. The Journal of Comparative Neurology 148, 91114.CrossRefGoogle ScholarPubMed
Chavez, A.E., Singer, J.H. & Diamond, J.S. (2006). Fast neurotransmitter release triggered by Ca influx through AMPA-type glutamate receptors. Nature 443, 705708.CrossRefGoogle ScholarPubMed
Chun, M.H., Han, S.H., Chung, J.W. & Wässle, H. (1993). Electron microscopic analysis of the rod pathway of the rat retina. The Journal of Comparative Neurology 332, 421432.CrossRefGoogle ScholarPubMed
Cleland, B.G., Dubin, M.W. & Levick, W.R. (1971). Sustained and transient neurons in the cat’s retina and lateral geniculate nucleus. The Journal of Physiology 217, 473496.CrossRefGoogle ScholarPubMed
Cohen, E.D. (1998). Interactions of inhibition and excitation in the light-evoked currents of X type retinal ganglion cells. Journal of Neurophysiology 80, 29752990.CrossRefGoogle ScholarPubMed
Cohen, E.D. & Miller, R.F. (1999). The network-selective actions of quinoxalines on the neurocircuitry operations of the rabbit retina. Brain Research 831, 206228.CrossRefGoogle ScholarPubMed
Cohen, E. & Sterling, P. (1990). Convergence and divergence of cones onto bipolar cells in the central area of cat retina. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 330, 323328.Google ScholarPubMed
Crook, J.D., Davenport, C.M., Peterson, B.B., Packer, O.S., Detwiler, P.B. & Dacey, D.M. (2009). Parallel ON and OFF cone bipolar inputs establish spatially coextensive receptive field structure of blue-yellow ganglion cells in primate retina. The Journal of Neuroscience 29, 83728387.CrossRefGoogle ScholarPubMed
Dacheux, R.F. & Raviola, E. (1986). The rod pathway in the rabbit retina: A depolarizing bipolar and amacrine cell. The Journal of Neuroscience 6, 331345.CrossRefGoogle ScholarPubMed
Deans, M.R., Völgyi, B., Goodenough, D.A., Bloomfield, S.A. & Paul, D.L. (2002). Connexin36 is essential for transmission of rod-mediated visual signals in the mammalian retina. Neuron 36, 703712.CrossRefGoogle ScholarPubMed
Dedek, K., Schultz, K., Pieper, M., Dirks, P., Maxeiner, S., Willecke, K., Weiler, R. & Janssen-Bienhold, U. (2006). Localization of heterotypic gap junctions composed of connexin45 and connexin36 in the rod pathway of the mouse retina. The European Journal of Neuroscience 24, 16751686.CrossRefGoogle ScholarPubMed
Demb, J.B., Zaghloul, K., Haarsma, L. & Sterling, P. (2001 a). Bipolar cells contribute to nonlinear spatial summation in the brisk-transient (Y) ganglion cell in mammalian retina. The Journal of Neuroscience 21, 74477454.CrossRefGoogle ScholarPubMed
Demb, J.B., Zaghloul, K. & Sterling, P. (2001 b). Cellular basis for the response to second-order motion cues in Y retinal ganglion cells. Neuron 32, 711721.CrossRefGoogle ScholarPubMed
DeVries, S.H. & Baylor, D.A. (1995). An alternative pathway for signal flow from rod photoreceptors to ganglion cells in mammalian retina. Proceedings of the National Academy of Sciences of the United States of America 92, 1065810662.CrossRefGoogle ScholarPubMed
Dowling, J.E. & Boycott, B.B. (1966). Organization of the primate retina: Electron microscopy. Proceedings of the Royal Society of London. Series B, Biological Sciences 166, 80111.Google ScholarPubMed
Dunn, F.A., Doan, T., Sampath, A.P. & Rieke, F. (2006). Controlling the gain of rod-mediated signals in the Mammalian retina. The Journal of Neuroscience 26, 39593970.CrossRefGoogle ScholarPubMed
Famiglietti, E.V. Jr. & Kolb, H. (1975). A bistratified amacrine cell and synaptic circuitry in the inner plexiform layer of the retina. Brain Research 84, 293300.CrossRefGoogle Scholar
Feigenspan, A., Teubner, B., Willecke, K. & Weiler, R. (2001). Expression of neuronal connexin36 in AII amacrine cells of the mammalian retina. The Journal of Neuroscience 21, 230239.CrossRefGoogle ScholarPubMed
Field, G.D., Greschner, M., Gauthier, J.L., Rangel, C., Shlens, J., Sher, A., Marshak, D.W., Litke, A.M. & Chichilnisky, E.J. (2009). High-sensitivity rod photoreceptor input to the blue-yellow color opponent pathway in macaque retina. Nature Neuroscience 12, 11591164.CrossRefGoogle Scholar
Field, G.D. & Rieke, F. (2002). Nonlinear signal transfer from mouse rods to bipolar cells and implications for visual sensitivity. Neuron 34, 773785.CrossRefGoogle ScholarPubMed
Field, G.D., Sampath, A.P. & Rieke, F. (2005). Retinal processing near absolute threshold: From behavior to mechanism. Annual Review of Physiology 67, 491514.CrossRefGoogle ScholarPubMed
Freed, M.A. & Sterling, P. (1988). The ON-alpha ganglion cell of the cat retina and its presynaptic cell types. The Journal of Neuroscience 8, 23032320.CrossRefGoogle ScholarPubMed
Gouras, P. & Link, K. (1966). Rod and cone interaction in dark-adapted monkey ganglion cells. The Journal of Physiology 184, 499510.CrossRefGoogle ScholarPubMed
Hack, I., Peichl, L. & Brandstatter, J.H. (1999). An alternative pathway for rod signals in the rodent retina: Rod photoreceptors, cone bipolar cells, and the localization of glutamate receptors. Proceedings of the National Academy of Sciences of the United States of America 96, 1413014135.CrossRefGoogle ScholarPubMed
Hampson, E.C., Vaney, D.I. & Weiler, R. (1992). Dopaminergic modulation of gap junction permeability between amacrine cells in mammalian retina. The Journal of Neuroscience 12, 49114922.CrossRefGoogle ScholarPubMed
Han, Y. & Massey, S.C. (2005). Electrical synapses in retinal ON cone bipolar cells: Subtype-specific expression of connexins. Proceedings of the National Academy of Sciences of the United States of America 102, 1331313318.CrossRefGoogle ScholarPubMed
Hartveit, E. (1999). Reciprocal synaptic interactions between rod bipolar cells and amacrine cells in the rat retina. Journal of Neurophysiology 81, 29232936.CrossRefGoogle ScholarPubMed
Hecht, S., Shlaer, S. & Pirenne, M.H. (1942). Energy, quanta, and vision. The Journal of General Physiology 25, 819840.CrossRefGoogle ScholarPubMed
Hochstein, S. & Shapley, R.M. (1976). Linear and nonlinear spatial subunits in Y cat retinal ganglion cells. The Journal of Physiology 262, 265284.CrossRefGoogle ScholarPubMed
Jacoby, R.A. & Marshak, D.W. (2000). Synaptic connections of DB3 diffuse bipolar cell axons in macaque retina. The Journal of Comparative Neurology 416, 1929.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Jarsky, T., Tian, M. & Singer, J.H. (2010). Nanodomain control of exocytosis is responsible for the signaling capability of a retinal ribbon synapse. The Journal of Neuroscience 30, 1188511895.CrossRefGoogle ScholarPubMed
Kim, S.A., Jung, C.K., Kang, T.H., Jeon, J.H., Cha, J., Kim, I.B. & Chun, M.H. (2010). Synaptic connections of calbindin-immunoreactive cone bipolar cells in the inner plexiform layer of rabbit retina. Cell & Tissue Research 339, 311320.CrossRefGoogle ScholarPubMed
Kim, I.B., Park, M.R., Kang, T.H., Kim, H.J., Lee, E.J., Ahn, M.D. & Chun, M.H. (2005). Synaptic connections of cone bipolar cells that express the neurokinin 1 receptor in the rabbit retina. Cell & Tissue Research 321, 18.CrossRefGoogle ScholarPubMed
Kolb, H. (1970). Organization of the outer plexiform layer of the primate retina: Electron microscopy of Golgi-impregnated cells. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 258, 22.Google ScholarPubMed
Kolb, H. & Famiglietti, E.V. (1974). Rod and cone pathways in the inner plexiform layer of cat retina. Science 186, 4749.CrossRefGoogle ScholarPubMed
Kolb, H. & Nelson, R. (1983). Rod pathways in the retina of the cat. Vision Research 23, 301312.CrossRefGoogle ScholarPubMed
Kolb, H. & Nelson, R. (1993). OFF-alpha and OFF-beta ganglion cells in cat retina: II. Neural circuitry as revealed by electron microscopy of HRP stains. The Journal of Comparative Neurology 329, 85110.CrossRefGoogle ScholarPubMed
Kothmann, W.W., Massey, S.C. & O’Brien, J. (2009). Dopamine-stimulated dephosphorylation of connexin 36 mediates AII amacrine cell uncoupling. The Journal of Neuroscience 29, 1490314911.CrossRefGoogle ScholarPubMed
Lamb, T.D. (2009). Evolution of vertebrate retinal photoreception. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 364, 23.Google ScholarPubMed
Lamb, T.D. & Simon, E.J. (1976). The relation between intercellular coupling and electrical noise in turtle photoreceptors. The Journal of Physiology 263, 257286.CrossRefGoogle ScholarPubMed
Lee, B.B., Smith, V.C., Pokorny, J. & Kremers, J. (1997). Rod inputs to macaque ganglion cells. Vision Research 37, 28132828.CrossRefGoogle ScholarPubMed
Li, W., Keung, J.W. & Massey, S.C. (2004). Direct synaptic connections between rods and OFF cone bipolar cells in the rabbit retina. The Journal of Comparative Neurology 474, 112.CrossRefGoogle ScholarPubMed
Liang, Z. & Freed, M.A. (2010). The ON pathway rectifies the OFF pathway of the mammalian retina. The Journal of Neuroscience 30, 55335543.CrossRefGoogle ScholarPubMed
Manookin, M.B., Beaudoin, D.L., Ernst, Z.R., Flagel, L.J. & Demb, J.B. (2008). Disinhibition combines with excitation to extend the operating range of the OFF visual pathway in daylight. The Journal of Neuroscience 28, 41364150.CrossRefGoogle ScholarPubMed
Manookin, M.B. & Demb, J.B. (2006). Presynaptic mechanism for slow contrast adaptation in mammalian retinal ganglion cells. Neuron 50, 453464.CrossRefGoogle ScholarPubMed
Margolis, D.J. & Detwiler, P.B. (2007). Different mechanisms generate maintained activity in ON and OFF retinal ganglion cells. The Journal of Neuroscience 27, 59946005.CrossRefGoogle ScholarPubMed
Massey, S.C. & Mills, S.L. (1996). A calbindin-immunoreactive cone bipolar cell type in the rabbit retina. The Journal of Comparative Neurology 366, 1533.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Massey, S.C. & Mills, S.L. (1999). Gap junctions between AII amacrine cells and calbindin-positive bipolar cells in the rabbit retina. Visual Neuroscience 16, 11811189.CrossRefGoogle ScholarPubMed
Mastronarde, D.N. (1983). Correlated firing of cat retinal ganglion cells. II. Responses of X- and Y-cells to single quantal events. Journal of Neurophysiology 49, 325349.CrossRefGoogle ScholarPubMed
Maxeiner, S., Dedek, K., Janssen-Bienhold, U., AmmerMüller, J., Brune, H., Kirsch, T., Pieper, M., Degen, J., Kruger, O., Willecke, K. & Weiler, R. (2005). Deletion of connexin45 in mouse retinal neurons disrupts the rod/cone signaling pathway between AII amacrine and ON cone bipolar cells and leads to impaired visual transmission. The Journal of Neuroscience 25, 566576.CrossRefGoogle ScholarPubMed
McGuire, B.A., Stevens, J.K. & Sterling, P. (1984). Microcircuitry of bipolar cells in cat retina. The Journal of Neuroscience 4, 29202938.CrossRefGoogle ScholarPubMed
Merighi, A., Raviola, E. & Dacheux, R.F. (1996). Connections of two types of flat cone bipolars in the rabbit retina. The Journal of Comparative Neurology 371, 164178.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
Mills, S.L. & Massey, S.C. (1995). Differential properties of two gap junctional pathways made by AII amacrine cells. Nature 377, 734737.CrossRefGoogle ScholarPubMed
Mills, S.L., O’Brien, J.J., Li, W., O’Brien, J. & Massey, S.C. (2001). Rod pathways in the mammalian retina use connexin 36. The Journal of Comparative Neurology 436, 336350.CrossRefGoogle ScholarPubMed
Molnar, A., Hsueh, H.A., Roska, B. & Werblin, F.S. (2009). Crossover inhibition in the retina: Circuitry that compensates for nonlinear rectifying synaptic transmission. Journal of Computational Neuroscience 37, 569590.CrossRefGoogle Scholar
Müller, F., Wässle, H. & Voigt, T. (1988). Pharmacological modulation of the rod pathway in the cat retina. Journal of Neurophysiology 59, 16571672.CrossRefGoogle ScholarPubMed
Münch, T.A., da Silveira, R.A., Siegert, S., Viney, T.J., Awatramani, G.B. & Roska, B. (2009). Approach sensitivity in the retina processed by a multifunctional neural circuit. Nature Neuroscience 12, 13081316.CrossRefGoogle ScholarPubMed
Murphy, G.J. & Rieke, F. (2006). Network variability limits stimulus-evoked spike timing precision in retinal ganglion cells. Neuron 52, 511524.CrossRefGoogle ScholarPubMed
Murphy, G.J. & Rieke, F. (2008). Signals and noise in an inhibitory interneuron diverge to control activity in nearby retinal ganglion cells. Nature Neuroscience 11, 318326.CrossRefGoogle Scholar
Nelson, R. (1977). Cat cones have rod input: A comparison of the response properties of cones and horizontal cell bodies in the retina of the cat. The Journal of Comparative Neurology 172, 109135.CrossRefGoogle ScholarPubMed
Nelson, R. (1982). AII amacrine cells quicken time course of rod signals in the cat retina. Journal of Neurophysiology 47, 928947.CrossRefGoogle ScholarPubMed
Neve, K.A., Seamans, J.K. & Trantham-Davidson, H. (2004). Dopamine receptor signaling. Journal of Receptor and Signal Transduction Research 24, 165205.CrossRefGoogle ScholarPubMed
Nguyen-Legros, J., Simon, A., Caille, I. & Bloch, B. (1997). Immunocytochemical localization of dopamine D1 receptors in the retina of mammals. Visual Neuroscience 14, 545551.CrossRefGoogle ScholarPubMed
Owczarzak, M.T. & Pourcho, R.G. (1999). Transmitter-specific input to OFF-alpha ganglion cells in the cat retina. The Anatomical Record 255, 363373.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Pang, J.J., Abd-El-Barr, M.M., Gao, F., Bramblett, D.E., Paul, D.L. & Wu, S.M. (2007). Relative contributions of rod and cone bipolar cell inputs to AII amacrine cell light response in the mouse retina. The Journal of Physiology 580, 397410.CrossRefGoogle ScholarPubMed
Pang, J.J., Gao, F. & Wu, S.M. (2004). Light-evoked current responses in rod bipolar cells, cone depolarizing bipolar cells and AII amacrine cells in dark-adapted mouse retina. The Journal of Physiology 558, 897912.CrossRefGoogle ScholarPubMed
Partida, G.J., Lee, S.C., Haft-Candell, L., Nichols, G.S. & Ishida, A.T. (2004). DARPP-32-like immunoreactivity in AII amacrine cells of rat retina. The Journal of Comparative Neurology 480, 251263.CrossRefGoogle ScholarPubMed
Petrides, A. & Trexler, E.B. (2008). Differential output of the high-sensitivity rod photoreceptor: AII amacrine pathway. The Journal of Comparative Neurology 507, 16531662.CrossRefGoogle ScholarPubMed
Pourcho, R.G. & Goebel, D.J. (1985). A combined Golgi and autoradiographic study of (3H)glycine-accumulating amacrine cells in the cat retina. The Journal of Comparative Neurology 233, 473480.CrossRefGoogle ScholarPubMed
Protti, D.A. & Llano, I. (1998). Calcium currents and calcium signaling in rod bipolar cells of rat retinal slices. The Journal of Neuroscience 18, 37153724.CrossRefGoogle ScholarPubMed
Purpura, K., Kaplan, E. & Shapley, R.M. (1988). Background light and the contrast gain of primate P and M retinal ganglion cells. Proceedings of the National Academy of Sciences of the United States of America 85, 45344537.CrossRefGoogle ScholarPubMed
Raviola, E. & Dacheux, R.F. (1987). Excitatory dyad synapse in rabbit retina. Proceedings of the National Academy of Sciences of the United States of America 84, 73247328.CrossRefGoogle ScholarPubMed
Raviola, E. & Gilula, N.B. (1973). Gap junctions between photoreceptor cells in the vertebrate retina. Proceedings of the National Academy of Sciences of the United States of America 70, 16771681.CrossRefGoogle ScholarPubMed
Rosenberg, A., Husson, T.R. & Issa, N.P. (2010). Subcortical representation of non-Fourier image features. The Journal of Neuroscience 30, 19851993.CrossRefGoogle ScholarPubMed
Sakitt, B. (1972). Counting every quantum. The Journal of Physiology 223, 131150.CrossRefGoogle ScholarPubMed
Sampath, A.P. & Rieke, F. (2004). Selective transmission of single photon responses by saturation at the rod-to-rod bipolar synapse. Neuron 41, 431443.CrossRefGoogle ScholarPubMed
Schorderet, M. & Nowak, J.Z. (1990). Retinal dopamine D1 and D2 receptors: Characterization by binding or pharmacological studies and physiological functions. Cellular and Molecular Neurobiology 10, 303325.CrossRefGoogle ScholarPubMed
Schneeweis, D.M. & Schnapf, J.L. (1995). Photovoltage of rods and cones in the macaque retina. Science 268, 10531056.CrossRefGoogle ScholarPubMed
Singer, J.H. & Diamond, J.S. (2003). Sustained Ca2+ entry elicits transient postsynaptic currents at a retinal ribbon synapse. The Journal of Neuroscience 23, 1092310933.CrossRefGoogle Scholar
Singer, J.H., Lassova, L., Vardi, N. & Diamond, J.S. (2004). Coordinated multivesicular release at a mammalian ribbon synapse. Nature Neuroscience 7, 826833.CrossRefGoogle Scholar
Smith, R.G., Freed, M.A. & Sterling, P. (1986). Microcircuitry of the dark-adapted cat retina: Functional architecture of the rod-cone network. The Journal of Neuroscience 6, 35053517.CrossRefGoogle ScholarPubMed
Smith, R.G. & Vardi, N. (1995). Simulation of the AII amacrine cell of mammalian retina: Functional consequences of electrical coupling and regenerative membrane properties. Visual Neuroscience 12, 851860.CrossRefGoogle ScholarPubMed
Soucy, E., Wang, Y., Nirenberg, S., Nathans, J. & Meister, M. (1998). A novel signaling pathway from rod photoreceptors to ganglion cells in mammalian retina. Neuron 21, 481493.CrossRefGoogle ScholarPubMed
Sterling, P., Freed, M.A. & Smith, R.G. (1988). Architecture of rod and cone circuits to the on-beta ganglion cell. The Journal of Neuroscience 8, 623642.CrossRefGoogle Scholar
Stiles, W.S. (1959). Color vision: The approach through increment-threshold sensitivity. Proceedings of the National Academy of Sciences of the United States of America 45, 14.Google Scholar
Strettoi, E., Dacheux, R.F. & Raviola, E. (1994). Cone bipolar cells as interneurons in the rod pathway of the rabbit retina. The Journal of Comparative Neurology 347, 139149.CrossRefGoogle ScholarPubMed
Strettoi, E. & Masland, R.H. (1996). The number of unidentified amacrine cells in the mammalian retina. Proceedings of the National Academy of Sciences of the United States of America 93, 1490614911.CrossRefGoogle ScholarPubMed
Strettoi, E., Raviola, E. & Dacheux, R.F. (1992). Synaptic connections of the narrow-field, bistratified rod amacrine cell (AII) in the rabbit retina. The Journal of Comparative Neurology 325, 152168.CrossRefGoogle ScholarPubMed
Svenningsson, P., Nishi, A., Fisone, G., Girault, J.A., Nairn, A.C. & Greengard, P. (2004). DARPP-32: An integrator of neurotransmission. Annual Review of Pharmacology and Toxicology 44, 269296.CrossRefGoogle ScholarPubMed
Tessier-Lavigne, M. & Attwell, D. (1988). The effect of photoreceptor coupling and synapse nonlinearity on signal:noise ratio in early visual processing. Proceedings of the Royal Society of London. Series B, Biological Sciences 234, 171197.Google ScholarPubMed
Tian, M., Jarsky, T., Murphy, G.J., Rieke, F. & Singer, J.H. (2010). Voltage-gated Na channels in AII amacrine cells accelerate scotopic light responses mediated by the rod bipolar cell pathway. The Journal of Neuroscience 30, 46504659.CrossRefGoogle ScholarPubMed
Trexler, E.B., Li, W. & Massey, S.C. (2005). Simultaneous contribution of two rod pathways to AII amacrine and cone bipolar cell light responses. Journal of Neurophysiology 93, 14761485.CrossRefGoogle ScholarPubMed
Tsukamoto, Y., Morigiwa, K., Ishii, M., Takao, M., Iwatsuki, K., Nakanishi, S. & Fukuda, Y. (2007). A novel connection between rods and ON cone bipolar cells revealed by ectopic metabotropic glutamate receptor 7 (mGluR7) in mGluR6-deficient mouse retinas. The Journal of Neuroscience 27, 62616267.CrossRefGoogle ScholarPubMed
Tsukamoto, Y., Morigiwa, K., Ueda, M. & Sterling, P. (2001). Microcircuits for night vision in mouse retina. The Journal of Neuroscience 21, 86168623.CrossRefGoogle ScholarPubMed
Urschel, S., Hoher, T., Schubert, T., Alev, C., Sohl, G., Worsdorfer, P., Asahara, T., Dermietzel, R., Weiler, R. & Willecke, K. (2006). Protein kinase A-mediated phosphorylation of connexin36 in mouse retina results in decreased gap junctional communication between AII amacrine cells. The Journal of Biological Chemistry 281, 3316333171.CrossRefGoogle ScholarPubMed
Vaney, D.I. (1991). Many diverse types of retinal neurons show tracer coupling when injected with biocytin or Neurobiotin. Neuroscience Letters 125, 187190.CrossRefGoogle ScholarPubMed
Vaney, D.I., Gynther, I.C. & Young, H.M. (1991). Rod-signal interneurons in the rabbit retina: 2. AII amacrine cells. The Journal of Comparative Neurology 310, 154169.CrossRefGoogle ScholarPubMed
Vaney, D.I., Nelson, J.C. & Pow, D.V. (1998). Neurotransmitter coupling through gap junctions in the retina. The Journal of Neuroscience 18, 1059410602.CrossRefGoogle ScholarPubMed
Vardi, N. & Smith, R.G. (1996). The AII amacrine network: Coupling can increase correlated activity. Vision Research 36, 37433757.CrossRefGoogle ScholarPubMed
van Rossum, M.C. & Smith, R.G. (1998). Noise removal at the rod synapse of mammalian retina. Visual Neuroscience 15, 809821.CrossRefGoogle ScholarPubMed
van Wyk, M., Wässle, H. & Taylor, W.R. (2009). Receptive field properties of ON- and OFF-ganglion cells in the mouse retina. Visual Neuroscience 26, 297308.CrossRefGoogle Scholar
Veruki, M.L. & Hartveit, E. (2002 a). AII (Rod) amacrine cells form a network of electrically coupled interneurons in the mammalian retina. Neuron 33, 935946.CrossRefGoogle Scholar
Veruki, M.L. & Hartveit, E. (2002 b). Electrical synapses mediate signal transmission in the rod pathway of the mammalian retina. The Journal of Neuroscience 22, 1055810566.CrossRefGoogle ScholarPubMed
Veruki, M.L., Mørkve, S.H. & Hartveit, E. (2003). Functional properties of spontaneous EPSCs and non-NMDA receptors in rod amacrine (AII) cells in the rat retina. The Journal of Physiology 549, 759774.CrossRefGoogle ScholarPubMed
Veruki, M.L., Oltedal, L. & Hartveit, E. (2008). Electrical synapses between AII amacrine cells: Dynamic range and functional consequences of variation in junctional conductance. Journal of Neurophysiology 100, 33053322.CrossRefGoogle ScholarPubMed
Veruki, M.L. & Wässle, H. (1996). Immunohistochemical localization of dopamine D1 receptors in rat retina. The European Journal of Neuroscience 8, 22862297.CrossRefGoogle ScholarPubMed
Völgyi, B., Deans, M.R., Paul, D.L. & Bloomfield, S.A. (2004). Convergence and segregation of the multiple rod pathways in mammalian retina. The Journal of Neuroscience 24, 1118211192.CrossRefGoogle ScholarPubMed
Wässle, H., Grünert, U., Chun, M.H. & Boycott, B.B. (1995). The rod pathway of the macaque monkey retina: Identification of AII-amacrine cells with antibodies against calretinin. The Journal of Comparative Neurology 361, 537551.CrossRefGoogle ScholarPubMed
Wässle, H., Heinze, L., Ivanova, E., Majumdar, S., Weiss, J., Harvey, R.J. & Haverkamp, S. (2009). Glycinergic transmission in the Mammalian retina. Frontiers in Molecular Neuroscience 2, 6.CrossRefGoogle ScholarPubMed
Werblin, F.S. (2010). Six different roles for crossover inhibition in the retina: Correcting the nonlinearities of synaptic transmission. Visual Neuroscience 27, 18.CrossRefGoogle ScholarPubMed
Witkovsky, P. (2004). Dopamine and retinal function. Documenta Ophthalmologica 108, 1740.CrossRefGoogle ScholarPubMed
Witkovsky, P., Svenningsson, P., Yan, L., Bateup, H. & Silver, R. (2007). Cellular localization and function of DARPP-32 in the rodent retina. The European Journal of Neuroscience 25, 32333242.CrossRefGoogle ScholarPubMed
Xia, X.B. & Mills, S.L. (2004). Gap junctional regulatory mechanisms in the AII amacrine cell of the rabbit retina. Visual Neuroscience 21, 791805.CrossRefGoogle ScholarPubMed
Xin, D. & Bloomfield, S.A. (1999). Comparison of the responses of AII amacrine cells in the dark- and light-adapted rabbit retina. Visual Neuroscience 16, 653665.CrossRefGoogle ScholarPubMed
Young, H.M. & Vaney, D.I. (1991). Rod-signal interneurons in the rabbit retina: 1. Rod bipolar cells. The Journal of Comparative Neurology 310, 139153.CrossRefGoogle ScholarPubMed
Zaghloul, K.A., Boahen, K. & Demb, J.B. (2003). Different circuits for ON and OFF retinal ganglion cells cause different contrast sensitivities. The Journal of Neuroscience 23, 26452654.CrossRefGoogle ScholarPubMed
Zhang, J., Li, W., Hoshi, H., Mills, S.L. & Massey, S.C. (2005). Stratification of alpha ganglion cells and ON/OFF directionally selective ganglion cells in the rabbit retina. Visual Neuroscience 22, 535549.CrossRefGoogle ScholarPubMed
Zhang, J., Li, W., Trexler, E.B. & Massey, S.C. (2002). Confocal analysis of reciprocal feedback at rod bipolar terminals in the rabbit retina. The Journal of Neuroscience 22, 1087110882.CrossRefGoogle ScholarPubMed