Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-22T08:37:38.612Z Has data issue: false hasContentIssue false

The effects of V4 and middle temporal (MT) area lesions on visual performance in the rhesus monkey

Published online by Cambridge University Press:  02 June 2009

Peter H. Schiller
Affiliation:
Massachusetts Institute of Technology, Cambridge

Abstract

The effects of V4, MT, and combined V4+MT lesions were assessed on a broad range of visual capacities that included measures of contrast sensitivity, wavelength and brightness discrimination, form vision, pattern vision, motion and flicker perception, stereopsis, and the selection of stimuli that were less prominent than those with which they appeared in stimulus arrays. The major deficit observed was a loss in the ability, after V4 lesions, to select such less prominent stimuli; this was the case irrespective of the manner in which the stimulus arrays were made visible, using either luminance, chrominance, motion, or stereoscopic depth as surface media. In addition, V4 lesions yielded mild deficits in color, brightness, and form vision whereas MT lesions yielded mild to moderate deficits in motion and flicker perception. Both lesions produced mild deficits in contrast sensitivity, shape-from-motion perception, and yielded increased reaction times on many of the tasks. The impairment resulting from combined V4 and MT lesions was not greater than the sum of the deficits of either lesion. None of the lesions produced significant deficits in stereopsis. The findings suggest that (1) area V4 is part of a neural system that is involved in extracting stimuli from the visual scene that elicit less neural activity early in the visual system than do other stimuli with which they appear and (2) several other extrastriate regions and more than just two major cortical processing streams contribute to the processing of basic visual functions in the extrastriate cortex.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albright, T.D. & Desimone, R. (1987). Local precision of visuotopic organization in the middle temporal area (MT) of the macaque. Experimental Brain Research 62, 582592.Google Scholar
Berkley, M.A. (1979). A system for behavioral evaluation of the visual capacities of cats. Behavioral Research Methods Instruments and Computers 11, 545548.CrossRefGoogle Scholar
Cavanagh, P., Arguin, M. & Treisman, A. (1990). Effect of surface medium on visual search for orientation and size features. Journal of Experimental Psychology 16, 479491.Google ScholarPubMed
Dean, P. (1979). Visual cortex ablation and thresholds for successively presented stimuli in rheses monkeys: II. Hue. Experimental Brain Research 35, 6983.CrossRefGoogle Scholar
Derrington, A.M., Krauskopf, J. & Lennie, P. (1984). Chromatic mechanisms in lateral geniculate nucleus of macaque Journal of Physiology (London) 357, 241265.CrossRefGoogle ScholarPubMed
Desimone, R., Li, L., Lehky, S. & Ungerleider, L.G. (1990). Effects of V4 lesions on visual discrimination performance and on responses of neurons in inferior temporal cortex. Society for Neuroscience Abstracts 16, 621.Google Scholar
Desimone, R. & Schein, J. (1987). Visual properties of neurons in area V4 of the macaque: Sensitivity to stimulus form. Journal of Neurophysiology 57, 835868.CrossRefGoogle ScholarPubMed
Desimone, R., Schein, S.J., Moran, J. & Ungerleider, L.G. (1985). Contour, color, and shape analysis beyond the striate cortex. Vision Research 25, 441452.CrossRefGoogle ScholarPubMed
DeYoe, E.A. & Van Essen, D.C. (1988). Concurrent processing streams in monkey visual cortex. Trends in Neuroscience 11, 219226.CrossRefGoogle ScholarPubMed
Ettlinger, G., Iwai, E., Mishkin, M. & Rosvold, H.E. (1968). Visual discrimination in the monkey following serial ablation of inferotemporal and preoccipital cortex. Journal of Comparative and Physiological Psychology 65, 110117.CrossRefGoogle ScholarPubMed
Felleman, D.J. & Van Essen, D.C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex 1, 147.CrossRefGoogle ScholarPubMed
Ferrera, V.P., Nealy, T.A. & Maunsell, J.H.R. (1992). Mixed par-vocellular and magnocellular geniculate signals in visual area V4. Nature 358, 756758.CrossRefGoogle ScholarPubMed
Gattass, R. & Gross, C.G. (1981). Visual topography of striate projection zone (MT) in posterior superior temporal sulcus of the macaque. Journal of Physiology 46, 621637.Google ScholarPubMed
Gattass, R., Sousa, A.P.B. & Gross, C.G. (1988). Visuotopic organization of V3 and V4 of the macaque. Journal of Neuroscience 8, 18311845.CrossRefGoogle ScholarPubMed
Gross, C.G. & Mishkin, M. (1977). The neural basis of stimulus equivalence across retinal translation. In Lateralization in the Nervous System, ed. Harnard, S., Doty, R.W., Jaynes, J., Goldstein, L. & Krauthamer, G., pp. 109122. London, England: Academic Press.CrossRefGoogle Scholar
Haenny, P.E. & Schiller, P.H. (1988). State dependent activity in monkey visual cortex. I. Single cell activity in VI and V4 on visual tasks. Experimental Brain Research 69, 225244.CrossRefGoogle Scholar
Haenny, P.E., Maunsell, J.H.R. & Schiller, P.H. (1988). State dependent activity in monkey visual cortex. II. Retinal and extraretinal factors in V4. Experimental Brain Research 69, 245259.CrossRefGoogle ScholarPubMed
Heywood, C.A. & Cowey, A. (1987). On the role of cortical area V4 in the discrimination of hue and pattern in macaque monkeys. Journal of Neuroscience 7, 26012617.CrossRefGoogle ScholarPubMed
Hubel, D.H. & Wiesel, T.N. (1970). Cells sensitive to binocular depth in area 18 of the macaque cortex Nature (London) 225, 4142.CrossRefGoogle Scholar
Kuffler, S.W. (1953). Discharge patterns and functional organization of the mammalian retina. Journal of Neurophysiology 16, 3768.CrossRefGoogle Scholar
Lennie, P., Krauskopf, J. & Sclar, G. (1990). Chromatic mechanisms in striate cortex of macaque. Journal of Neuroscience 10, 649669.CrossRefGoogle ScholarPubMed
Livingstone, M.S. & Hubel, D.H. (1984). Anatomy and physiology of a color system in the primate visual system. Journal of Neuroscience 4, 309356.CrossRefGoogle Scholar
Livingstone, M.S. & Hubel, D.H. (1987). Psychophysical evidence for separate channels for the perception of form, color, movement, and stereopsis. Journal of Neuroscience 7, 34163468.CrossRefGoogle Scholar
Livingstone, M.S. & Hubel, D.H. (1988). Segregation of form, color, movement, and depth: Anatomy, physiology, and perception. Science 240, 740749.CrossRefGoogle ScholarPubMed
Logothetis, N.K., Schiller, P.H., Charles, E.R. & Hurlbert, A.C. (1990). Perceptual deficits and the activity of the color-opponent and broad-band pathways at isoluminance. Science 247, 214217.CrossRefGoogle ScholarPubMed
MacLeod, D.I.A. & Boynton, R.M. (1978). Chromaticity diagram showing cone excitation by stimuli of equal luminance. Journal of the Optical Society of America 69, 11831186.CrossRefGoogle Scholar
Maguire, W.M. & Baizer, J.S. (1984). Visuotopic organization of the prelunate gyrus in rhesus monkey. Journal of Neuroscience 4, 16901704.CrossRefGoogle ScholarPubMed
Maunsell, J.H.R., Nealey, T.A. & Depriest, D.D. (1990). Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey. Journal of Neuroscience 10, 33233334.CrossRefGoogle ScholarPubMed
Maunsell, J.H.R. & Van Essen, D.C. (1987). Topographic organization of the middle temporal visual area in the macaque monkey: Representational biases and the relationship to callosal connections and myeloarchitectonic boundaries. Journal of Comparative Neurology 266, 535555.CrossRefGoogle ScholarPubMed
Moran, J. & Desimone, R. (1985). Selective attention gates visual processing in the extrastriate cortex. Science 229, 782784.CrossRefGoogle ScholarPubMed
Newsome, W.T. & Wurtz, R.H. (1988). Probing visual cortical function with discrete chemical lesions. Trends in Neuroscience 11, 394400.CrossRefGoogle ScholarPubMed
Pokorny, J. & Smith, V.C. (1986). Colorimetry and color discrimination. In Handbook of Perception & Human Performance, Vol. I. Sensory Processes & Perception, ed. Boff, K.R., Kaufman, L. & Thomas, J.P., Chap. 8. New York, New York: John Wiley & Sons.Google Scholar
Robinson, D.A. (1963). A method of measuring eye movement using a scleral search coil in a magnetic field. IEEE Transactions in Biomedical Electronics 101, 131.Google Scholar
Rodman, H.R., Gross, C.G. & Albright, T.D. (1989). Afferent basis of visual response properties in area MT of the macaque. I. Effects of striate cortex removal. Journal of Neuroscience 9, 20332050.CrossRefGoogle ScholarPubMed
Schein, S.J. & Desimone, R. (1990). Spectral properties of V4 neurons on the macaque. Journal of Neuroscience 10, 33693389.CrossRefGoogle ScholarPubMed
Schiller, P.H. (1986). The central visual system. Vision Research 26, 13511386.CrossRefGoogle ScholarPubMed
Schiller, P.H. & Lee, K. (1991). The role of the primate extrastriate area V4 in vision. Science 251, 12511253.CrossRefGoogle ScholarPubMed
Schiller, P.H. & Logothetis, N.K. (1990). The color-opponent and broad-band channels of the primate visual system. Trends in Neuroscience 13, 392398.CrossRefGoogle ScholarPubMed
Schiller, P.H., Logothetis, N.K. & Charles, E.R. (1990). Role of color-opponent and broad-band channels in vision. Visual Neuroscience 5, 321346.CrossRefGoogle ScholarPubMed
Schiller, P.H., Logothetis, N.K. & Charles, E.R. (1991). Parallel pathways in the visual system: Their role in perception at isoluminance. Neuropsychologia 29, 433441.CrossRefGoogle ScholarPubMed
Ts’o, D.Y. & Gilbert, C.D. (1988). The organization of chromatic and spatial interactions in the primate striate cortex. Journal of Neuroscience 8, 17211727.Google ScholarPubMed
Ungerleider, L.G. & Mishkin, M. (1982). Two cortical visual systems. In Analysis of Visual Behavior, ed. Ingle, D.J., Goodale, M.A. & Mansfield, R.J.W., pp. 549586. Cambridge, Massachusetts: MIT Press.Google Scholar
Watson, A.B., Nielsen, K.R.K., Poirson, A., Futzhugh, A., Bilson, A., Nuyen, K. & Aumada, A. (1986). Behavioral Research Methods Instruments and Computers 18, 587594.CrossRefGoogle Scholar
Wild, H.M., Butler, S.R., Garden, D. & Kulikowski, J.J. (1985). Primate cortical area V4 important for color constancy but not wavelength discrimination. Nature 313, 133135.CrossRefGoogle Scholar
Young, M.P. (1992). Objective analysis of the topological organization of the primate cortical visual system. Nature 358, 152155.CrossRefGoogle ScholarPubMed
Zeki, S.M. (1973). Colour coding in rhesus monkey prestriate cortex. Brain Research 53, 422427.CrossRefGoogle ScholarPubMed
Zeki, S.M. (1980). The representation of colours in the cerebral cortex. Nature 284, 412418.CrossRefGoogle ScholarPubMed
Zeki, S. & Shipp, S. (1988). The functional logic of cortical connections. Nature 335, 311317.CrossRefGoogle ScholarPubMed