Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-22T07:14:13.122Z Has data issue: false hasContentIssue false

Cholinergic amacrine cells in the rabbit retina accumulate muscimol

Published online by Cambridge University Press:  02 June 2009

Stephen C. Massey
Affiliation:
Sensory Sciences Center, Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston
Kevin Blankenship
Affiliation:
Sensory Sciences Center, Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston
Stephen L. Mills
Affiliation:
Sensory Sciences Center, Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston

Abstract

The cholinergic amacrine cells of the rabbit retina form two mosaics placed symmetrically on either side of the inner plexiform layer. Recently, these cells have been reported to contain immunocytochemical markers for GABA. In this paper, we labeled the cholinergic cells with DAPI, then incubated the retina in [3H]-muscimol, a neuronal marker for GABA. Subsequently, we converted the DAPI fluorescence of the displaced cholinergic matrix to an opaque product by photooxidation in the presence of DAB. Autoradiography showed that all of the displaced cholinergic amacrine cells were labeled with ]3H]-muscimol, thus confirming the immunocytochemical results. The cholinergic cells account for approximately 80% of the cells in the ganglion cell layer which take up ]3H]-muscimol.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ames, A., III & Nesbett, F.B. (1981). In vitro retina as an experimental model of the central nervous system. Journal of Neurochemistry 37, 867877.CrossRefGoogle ScholarPubMed
Ariel, M. & Daw, N.W. (1982). Effects of cholinergic drugs on receptive-field properties of rabbit retinal ganglion cells. Journal of Physiology (London) 324, 135–60.CrossRefGoogle ScholarPubMed
Ball, A.K. & Brandon, C. (1986). Localization of ]3H]-GABA, -muscimol, and -glycine in goldfish retinas stained for glutamate decarboxylase. Journal of Neuroscience 6, 16211627.CrossRefGoogle ScholarPubMed
Brandon, C. (1987). Cholinergic neurons in the rabbit retina; immunocytochemical localization, and relationship to GABAergic and cholinesterase-containing neurons. Brain Research 401, 385391.CrossRefGoogle ScholarPubMed
Brandon, C. (1990). Starburst, cholinergic neurons of the dogfish retina. Investigations in Ophthalmology and Visual Science (Suppl.) 31, 535.Google Scholar
Brecha, N., Johnson, D., Peichl, L. & Wassle, H. (1988). Cholinergic amacrine cells of the rabbit retina contain glutamate decarboxylase and gamma-aminobutyrate immunoreactivity. Proceedings of the National Academy of Sciences of the U.S.A. 85, 61876191.CrossRefGoogle ScholarPubMed
Chun, M.-H., Wassle, H. & Brecha, N. (1988). Colocalization of ]3H]-muscimol and cholineacetyltransferase immunoreactivity in amacrine cells of the cat retina. Neuroscience Letters 94, 259263.CrossRefGoogle Scholar
Cunningham, J.R. & Neal, M.J. (1983). Effect of GABA agonists, glycine, taurine, and neuropeptides on acetylcholine release from rabbit retina. Journal of Physiology (London) 336, 553577.CrossRefGoogle ScholarPubMed
Famiglietti, E.V. & Tumosa, N. (1987). Immunocytochemical staining of cholinergic amacrine cells in rabbit retina. Brain Research 413, 398403.CrossRefGoogle ScholarPubMed
Freed, M.A., Nakamura, Y. & Sterling, P. (1983). Four types of amacrine in the cat retina that accumulate GABA. Journal of Comparative Neurology 219, 295304.CrossRefGoogle ScholarPubMed
Hendrickson, A., Ryan, M., Noble, B. & Wu, J.-Y. (1985). Colocalization of ];3H];-muscimol and antisera to GABA and glutamic acid decarboxylase within the same neurons in monkey retina. Brain Research 348, 291396.CrossRefGoogle ScholarPubMed
Marc, R.E. (1989). The anatomy of multiple GABAergic and glycinergic pathways in the inner plexiform layer of the goldfish retina. In Neurobiology of the Inner Retina, NATO ASI Series, Vol H31, eds. Weiler, R.. & Osborne, N.N., pp. 5364. Berlin, Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
Maranto, A. (1982). Neuronal mapping: a photooxidation reaction makes Lucifer Yellow useful for electron microscopy. Science 217, 953.CrossRefGoogle ScholarPubMed
Masland, RH. & Ames, A.D. (1976). Responses to acetylcholine of ganglion cells in an isolated mammalian retina. Journal of Neurophysiology 39, 12201235.CrossRefGoogle Scholar
Masland, R.H. & Mills, J.W. (1979). Autoradiographic identification of acetylcholine in the rabbit retina. Journal of Cell Biology 83, 159178.CrossRefGoogle ScholarPubMed
Masland, R.H., Mills, J.W. & Hayden, S.A. (1984). Acetylcholinesynthesizing amacrine cells: Identification and selective staining by using radioautography and fluorescent markers. Proceedings of the Royal Society B (London) 223, 79100.Google ScholarPubMed
Massey, S.C. (1990). Cell types using glutamate as a neurotransmitter in the vertebrate retina. Progress in Retinal Research 9, 399425.CrossRefGoogle Scholar
Massey, S.C. & Neal, M.J. (1979). The light-evoked release of acetylcholine from the rabbit retina in vivo and its inhibition by gammaaminobutyric acid. Journal of Neurochemistry 32, 13271329.CrossRefGoogle Scholar
Massey, S.C. & Redburn, D.A. (1982). A tonic gamma-aminobutyric acid-mediated inhibition of cholinergic amacrine cells in rabbit retina. Journal of Neuroscience 2, 16331643.CrossRefGoogle ScholarPubMed
Mills, S.L. & Massey, S.C. (1990). Labeling and distribution of All amacrine cells in the rabbit retina. Journal of Comparative Neurology (submitted).Google Scholar
Nishimura, Y., Schwarz, M.L. & Rakic, P. (1986). GABA and GAD immunoreactivity of photoreceptor terminals in primate retina. Nature 320, 753756.CrossRefGoogle ScholarPubMed
O'Malley, D.M. & Masland, R.H. (1989). Co-release of acetylcholine and gamma-aminobutyric acid by a retinal neuron. Proceedings of the National Academy of Science of the U.S.A. 85, 87378741.Google Scholar
Pourcho, R.G. (1981). Autoradiographic localization of ];3H];-musci- mol in the cat retina. Brain Research 215, 187199.CrossRefGoogle Scholar
Rodieck, R.W. (1989). Starburst amacrine cells of the primate retina. Journal of Comparative Neurology 285, 1837.CrossRefGoogle ScholarPubMed
Sandell, J.H. & Masland, R.H. (1988). Photoconversion of some fluorescent markers to a diaminobenzidine product. Journal of Histochemistry and Cytochemistry 36, 555559.CrossRefGoogle ScholarPubMed
Tauchi, M. & Masland, R.H. (1984). The shape and arrangement of the cholinergic neurons in the rabbit retina. Proceedings of the Royal Society B (London) 223, 101119.Google ScholarPubMed
Vaney, D.I. (1984). “Coronate” amacrine cells in the rabbit retina have the “starburst” dendritic morphology. Proceedings of the Royal Society B (London) 220, 501508.Google ScholarPubMed
Vaney, D.I. (1985). The morphology and topographic distribution of All amacrine cells in the cat retina. Proceedings of the Royal Society B (London) 224, 475488.Google ScholarPubMed
Vaney, D.I. & Young, H.M. (1988). GABA-like immunoreactivity in cholinergic amacrine cells of the rabbit retina. Brain Research 438, 369373.CrossRefGoogle ScholarPubMed
Wyatt, H.J. & Daw, N.W. (1976). Specific effects of neurotransmitter antagonists on ganglion cells in rabbit retina. Science 191, 204–5.CrossRefGoogle ScholarPubMed
Yazulla, S. (1986). Is GABA the neurotransmitter for some photoreceptors? Nature 320, 685686.CrossRefGoogle ScholarPubMed