Hostname: page-component-84b7d79bbc-g5fl4 Total loading time: 0 Render date: 2024-07-25T08:54:10.279Z Has data issue: false hasContentIssue false

Bipolar cells in the zebrafish retina

Published online by Cambridge University Press:  16 November 2010

V.P. CONNAUGHTON*
Affiliation:
Department of Biology, American University, Washington, District of Columbia
*
*Address correspondence and reprint requests to: V.P. Connaughton, Department of Biology, American University, 4400 Massachusetts Avenue, NW, Washington, DC 20016. E-mail: vconn@american.edu

Abstract

Zebrafish are an existing model for genetic and developmental studies due to their rapid external development and transparent embryos, which allow easy manipulation and observation of early developmental stages. The application of the zebrafish model to vision research has allowed for examination of retinal development and the characteristics of different retinal cell types, including bipolar cells. In particular, bipolar cell development, including differentiation, maturation, and gene expression, has been documented, as has physiological properties, such as voltage- and ligand-gated currents, and neurotransmitter receptor and ion channel expression. Mutant strains and transgenic lines have been used to document how bipolar cell connections and/or development may be altered, and toxicological studies examining how environmental factors may impact bipolar cell activity have been performed. The purpose of this paper was to review the existing literature on zebrafish bipolar cells, to provide a comprehensive overview of current information pertaining to this retinal cell type.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allwardt, B., Lall, A., Brockerhoff, W. & Dowling, J. (2001). Synapse formation is arrested in retinal photoreceptors of the zebrafish nrc mutant. The Journal of Neuroscience 21, 23302342.CrossRefGoogle ScholarPubMed
Amsterdam, A. & Becker, T. (2005). Transgenes as screening tools to probe and manipulate the zebrafish genome. Developmental Dynamics 234, 255268.Google Scholar
Asare, M., Nelson, R. & Connaughton, V. (2005). Effects of dopamine on glutamate responses in horizontal and bipolar cells isolated from zebrafish retina. ARVO e-abstracts 605.Google Scholar
Bahadori, R., Biehlmaier, O., Zeitz, C., Labhart, T., Makhankov, Y., Forster, U., Gesemann, M., Berger, W. & Neuhauss, S. (2006). Nyctalopin is essential for synaptic transmission in the cone dominated zebrafish retina. The European Journal of Neuroscience 24, 16641674.CrossRefGoogle ScholarPubMed
Bech-Hansen, N., Naylor, M., Maybaum, T., Sparkes, R., Koop, B., Birch, D., Bergen, A., Prinsen, C., Polomeno, R., Gal, A., Drack, A., Musarella, M., Jacobson, S., Young, R. & Weleber, R. (2000). Mutations in NYX, encoding the leucine-rick proteoglycan nyctalopin, cause X-linked complete congenital stationary night blindness. Nature 26, 319323.Google ScholarPubMed
Biehlmaier, O., Neuhauss, S. & Kohler, K. (2003). Synaptic plasticity and functionality at the cone terminal of the developing zebrafish retina. Journal of Neurobiology 56, 222236.Google Scholar
Bilotta, J., Saszik, S. & Sutherland, S. (2001). Rod contributions to the electroretinogram of the dark-adapted developing zebrafish. Developmental Dynamics 222, 564570.Google Scholar
Brockerhoff, S., Hurley, J., Janssen-Bienhold, U., Neuhauss, S., Driever, W. & Dowling, J. (1995). A behavioral screen for isolating zebrafish mutants with visual system defects. Proceedings of the National Academy of Sciences of the United States of America 92, 1054510549.CrossRefGoogle ScholarPubMed
Brockerhoff, S., Hurley, J., Niemi, G. & Dowling, J. (1997). A new form of inherited red-blindness identified in zebrafish. The Journal of Neuroscience 17, 42364242.CrossRefGoogle ScholarPubMed
Brockerhoff, S., Wilson, N., Stearns, G. & Lewis, A. (2010). A zebrafish mutation identifies nonclassic cadherins as critical modulators of outer retina physiology. ARVO e-abstracts 4799.Google Scholar
Burrone, J. & Lagnado, L. (1997). Electrical resonance and Ca2+ influx in the synaptic terminal of depolarizing bipolar cells from the goldfish retina. Journal of Physiology 505, 571584.CrossRefGoogle ScholarPubMed
Caminos, E., Velasco, A., Jarrin, M., Lillo, C., Jimeno, D., Aijon, J. & Lara, J. (2000). A comparative study of protein kinase C-like immunoreactive cells in the retina. Brain, Behavior and Evolution 56, 330339.CrossRefGoogle ScholarPubMed
Campbell, N., Reece, J., Urry, L., Cain, M., Wasserman, S., Minorsky, P. & Jackson, R. (2008). Biology (8th ed.). San Francisco, CA: Pearson-Benjamin Cummings.Google Scholar
Chuang, J., Mathers, P. & Raymond, P. (1999). Expression of three Rx homeobox genes in embryonic and adult zebrafish. Mechanisms of Development 84, 195198.Google Scholar
Clark, A., Yun, S., Veien, E., Wu, Y., Chow, R., Dorsky, R. & Levine, E. (2008). Negative regulation of Vsx1 by its paralog Chx10/Vsx2 is conserved in the vertebrate retina. Brain Research 1192, 99113.Google Scholar
Connaughton, V. (2001). Organization of ON- and OFF-pathways in the zebrafish retina: Neurotransmitter localization, electrophysiological responses of bipolar cells, and patterns of axon terminal stratification. Progress in Brain Research 131, 161176.Google Scholar
Connaughton, V., Behar, T., Liu, W.-L. & Massey, S. (1999). Immunocytochemical localization of excitatory and inhibitory neurotransmitters in the zebrafish retina. Visual Neuroscience 16, 483490.Google Scholar
Connaughton, V., Graham, D. & Nelson, R. (2004). Identification and morphological classification of horizontal, bipolar, and amacrine cells within the zebrafish retina. The Journal of Comparative Neurology 477, 371385.CrossRefGoogle ScholarPubMed
Connaughton, V. & Maguire, G. (1998). Differential expression of voltage-gated K+ and Ca2+ currents in bipolar cells in the zebrafish retinal slice. The European Journal of Neuroscience 10, 13501362.Google Scholar
Connaughton, V. & Nelson, R. (2000). Axonal stratification patterns and glutamate-gated conductance mechanisms in zebrafish retinal bipolar cells. Journal of Physiology 524, 135146.Google Scholar
Connaughton, V., Nelson, R. & Bender, A. (2008). Electrophysiological evidence of GABAA and GABAC receptors on zebrafish retinal bipolar cells. Visual Neuroscience 25, 139153.Google Scholar
Connaughton, V. & Warndorf, M. (2005). D1- and D2-like dopamine receptor activity enhance outward K+ currents in zebrafish retinal bipolar cells. ARVO e-abstracts 1195.Google Scholar
Curado, S., Stainier, D. & Anderson, R. (2008). Nitroreductase-mediated cell/tissue ablation in zebrafish: A spatially and temporally controlled ablation method with applications in developmental and regeneration studies. Nature Protocols 3, 948954.Google Scholar
Dorostkar, M., Dreosti, E., Odermatt, B. & Lagnado, L. (2010). Computational processing of optical measurements of neuronal and synaptic activity in networks. Journal of Neuroscience Methods 188, 141150.Google Scholar
Dowling, J. & Werblin, F. (1969). Organization of retina of the mudpuppy, Necturus maculosus. I. Synaptic structure. Journal of Neurophysiology 32, 315338.CrossRefGoogle ScholarPubMed
Dreosti, E., Odermatt, B., Dorostkar, M. & Lagnado, L. (2009). A genetically encoded reporter of synaptic activity in vivo. Nature Methods 6, 883891.Google Scholar
Emran, F., Rihel, J., Adolph, A., Wong, K., Kraves, S. & Dowling, J. (2007). OFF ganglion cells cannot drive the optokinetic reflex in zebrafish. Proceedings of the National Academy of Sciences of the United States of America 104, 1912619131.CrossRefGoogle ScholarPubMed
Euler, T. & Wassle, H. (1998). Different contributions of GABAA and GABAC receptors to rod and cone bipolar cells in a rat retinal slice preparation. Journal of Neurophysiology 79, 13841395.CrossRefGoogle Scholar
Fadool, J., Brockerhoff, S., Hyatt, G. & Dowling, J. (1997). Mutations affecting eye morphology in the developing zebrafish (Danio rerio). Developmental Genetics 20, 288295.Google Scholar
Fan, S. & Yazulla, S. (1999 a). Modulation of voltage-dependent K+ currents (IK(V)) in retinal bipolar cells by ascorbate is mediated by dopamine D1 receptors. Visual Neuroscience 16, 923931.CrossRefGoogle ScholarPubMed
Fan, S. & Yazulla, S. (1999 b). Suppression of voltage-dependent K+ currents in retinal bipolar cells by ascorbate. Visual Neuroscience 16, 141148.CrossRefGoogle ScholarPubMed
Gafka, A., Vogel, K. & Linn, C. (1999). Evidence of metabotropic glutamate receptor subtypes found on catfish horizontal and bipolar retinal neurons. Neuroscience 90, 14031414.CrossRefGoogle ScholarPubMed
Gan, W.-B., Grutzendler, J., Wong, W., Wong, R. & Lichtman, J. (2000). Multicolor “DiOlistic” labeling of the nervous system using lipophilic dye combinations. Neuron 27, 219225.CrossRefGoogle ScholarPubMed
Grant, G. & Dowling, J. (1995). A glutamate-activated chloride current in the cone-driven on bipolar cells of the white perch retina. The Journal of Neuroscience 15, 38523862.CrossRefGoogle ScholarPubMed
Grant, G. & Dowling, J. (1996). ON bipolar cell responses in the teleost retina are generated by two distinct mechanisms. Journal of Neurophysiology 76, 38423849.Google Scholar
Gregg, R., Kamermans, M., Klooster, J., Lukasiewicz, P., Peachey, N., Vessey, K. & McCall, M. (2007). Nyctalopin expression in retinal bipolar cells restores visual function in a mouse model of complete X-linked congenital stationary night blindness. Journal of Neurophysiology 98, 30233033.Google Scholar
Gregg, R., Mukhopadhyay, S., Candille, S., Ball, S., Pardue, M., McCall, M. & Peachey, N. (2003). Identification of the gene and the mutation responsible for the mouse nob phenotype. Investigative Ophthalmology and Visual Science 44, 378384.Google Scholar
Han, M.-H., Li, Y. & Yang, X.-L. (1997). Desensitizing GABAC receptors on carp retinal bipolar cells. Neuroreport 8, 13311335.Google Scholar
Heidelberger, R. & Matthews, G. (1991). Inhibition of calcium influx and calcium current by γ-aminobutyric acid in single synaptic terminals. Proceedings of the National Academy of Sciences of the United States of America 88, 71357139.Google Scholar
Heidelberger, R. & Matthews, G. (1992). Calcium influx and calcium current in single synaptic terminals of goldfish retinal bipolar neurons. Journal of Physiology 447, 235256.CrossRefGoogle ScholarPubMed
Higashijima, S. (2008). Transgenic zebrafish expressing fluorescent proteins in central nervous system neurons. Development, Growth and Differentiation 50, 407413.Google Scholar
Huag, M., Huang, Y.-Y., Gesemann, M. & Neuhauss, S. (2010). Expression and function of mGluR6 in the zebrafish retina. ARVO e-abstracts 4137.Google Scholar
Hughes, A., Saszik, S., Bilotta, J., DeMarco, P. Jr & Patterson, W.I. (1998). Cone contributions to the phototopic spectral sensitivity of the zebrafish ERG. Visual Neuroscience 15, 10291037.CrossRefGoogle Scholar
Hull, C., Li, G.-L. & Von Gersdorff, H. (2006). GABA transporters regulate a standing GABAC receptor-mediated current at a retinal presynaptic terminal. The Journal of Neuroscience 26, 69796984.CrossRefGoogle Scholar
Hull, C. & Von Gersdorff, H. (2004). Fast endocytosis is inhibited by GABA-mediated chloride influx at a presynaptic terminal. Neuron 44, 469482.Google Scholar
Jones, S. & Palmer, M. (2009). Activation of the tonic GABAC receptor current in retinal bipolar cell terminals by nonvesicular GABA release. Journal of Neurophysiology 102, 691699.Google Scholar
Joselevitch, C., Klooster, J. & Kamermans, M. (2007). Localization of metabotropic glutamate receptors in the outer plexiform layer of the goldfish retina. Cell and Tissue Research 330, 389403.Google Scholar
Kalloniatis, M. & Marc, R. (1990). Interplexiform cells of the goldfish retina. The Journal of Comparative Neurology 297, 340358.CrossRefGoogle ScholarPubMed
Kaneda, M., Andrasfalvy, B. & Kaneko, A. (2000). Modulation by Zn2+ of GABA responses in bipolar cells of the mouse retina. Visual Neuroscience 17, 273281.Google Scholar
Kaneko, A., Pinto, L. & Tachibana, M. (1989). Transient calcium current of retinal bipolar cells of the mouse retina. Journal of Physiology 410, 613629.Google Scholar
Kaneko, A. & Tachibana, M. (1985). A voltage-clamp analysis of membrane currents in solitary bipolar cells dissociated from Carassius auratus. Journal of Physiology 358, 131152.CrossRefGoogle ScholarPubMed
Kastenhuber, E., Maurer, C., Gesemann, M., Frueh, S., Renninger, S. & Neuhauss, S. (2010). Characterization of glutamate transporters (EAATs) in the zebrafish retina. ARVO e-abstracts 4118.Google Scholar
Kawakami, K. (2005). Transposon tools and methods in zebrafish. Developmental Dynamics 234, 244254.Google Scholar
Kay, J., Finger-Baier, K., Roeser, T., Staub, W. & Baier, H. (2001). Retinal ganglion cell genesis requires lakritz, a zebrafish atonal homolog. Neuron 30, 725736.CrossRefGoogle ScholarPubMed
Kay, J., Roeser, T., Mumm, J., Godinho, L., Mrejeru, A., Wong, R. & Baier, H. (2004). Transient requirement for ganglion cells during assembly of retinal synaptic layers. Development 131, 13311342.Google Scholar
Khan, N., Kondo, M., Hiriyanna, K., Jamison, J., Bush, R. & Sieving, P. (2005). Primate retinal signaling pathways: Suppressing ON-pathway activity in monkey with glutamate analogues mimics human CSNB1-NYX genetic night blindness. Journal of Neurophysiology 93, 481493.Google Scholar
Klooster, J., Yazulla, S. & Kamermans, M. (2009). Ultrastructural analysis of the glutamatergic system in the outer plexiform layer of zebrafish retina. Journal of Chemical Neuroanatomy 37, 254265.CrossRefGoogle ScholarPubMed
Kolb, H. & Jones, J. (1984). Synaptic organization of the outer plexiform layer of the turtle retina: An electron microscope study of serial sections. Journal of Neurocytology 13, 567591.Google Scholar
Lakowski, J., Majumder, A. & Lauderdale, J. (2007). Mechanisms controlling Pax6 isoform expression in the retina have been conserved between teleosts and mammals. Developmental Biology 307, 498520.CrossRefGoogle ScholarPubMed
Lasansky, A. (1973). Organization of the outer synaptic layer in the retina of the larval tiger salamander. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 265, 471489.Google Scholar
Lasater, E. (1988). Membrane currents of retinal bipolar cells in culture. Journal of Neurophysiology 60, 14601480.CrossRefGoogle ScholarPubMed
Lasater, E., Dowling, J. & Ripps, H. (1984). Pharmacological properties of isolated horizontal and bipolar cells from the skate retina. The Journal of Neuroscience 4, 19661975.Google Scholar
Li, Y. & Dowling, J. (2010). Specificity in the bipolar cell-photoreceptor connections in the zebrafish retina. ARVO e-abstracts 4125.Google Scholar
Link, B., Fadool, J., Malicki, J. & Dowling, J. (2000). The zebrafish young mutation acts non-cell-autonomously to uncouple differentiation from specification for all retinal cells. Development 127, 21772188.Google Scholar
Lukasiewicz, P. & Shields, C. (1998). Different contributions of GABAA and GABAC receptors confer distinct temporal properties to retinal synaptic responses. Journal of Neurophysiology 79, 31573167.Google Scholar
Magnupalli, V., Schwarz, K., Alpadi, K., Natarajam, S., Seigel, G. & Schmitz, F. (2008). Multiple RIBEYE-RIBEYE interactions create a dynamic scaffold for the formation of synaptic ribbons. The Journal of Neuroscience 28, 79547967.Google Scholar
Marc, R. & Cameron, D. (2001). A molecular phenotype atlas of the zebrafish retina. Journal of Neurocytology 30, 593654.Google Scholar
Marc, R. & Lam, D.-K. (1981). Glycinergic pathways in the goldfish retina. The Journal of Neuroscience 1, 152165.Google Scholar
Matsui, K., Hasegawa, J. & Tachibana, M. (2001). Modulation of excitatory synaptic transmission by GABAC receptor-mediated feedback in the mouse inner retina. Journal of Neurophysiology 86, 22852298.Google Scholar
Matthews, G. (1999). Synaptic mechanisms of bipolar cell terminals. Vision Research 39, 24692476.Google Scholar
Matthews, G., Ayoub, G. & Heidelberger, R. (1994). Presynaptic inhibition by GABA is mediated via two distinct GABA receptors with novel pharmacology. The Journal of Neuroscience 14, 10791090.Google Scholar
McGillem, G., Rotolo, T. & Dacheux, R. (2000). GABA responses of rod bipolar cells in rabbit retinal slices. Visual Neuroscience 17, 381389.Google Scholar
Mora-Ferrer, C., Yazulla, S., Studholme, K. & Haak-Frendscho, (1999). Dopamine D1-receptor immunolocalization in goldfish retina. The Journal of Comparative Neurology 411, 705714.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Morris, A., Schroeter, E., Bilotta, J., Wong, R. & Fadool, J. (2005). Cone survival despite rod degeneration in XOPS-mCFP transgenic zebrafish. Investigative Ophthalmology and Visual Science 46, 47624771.Google Scholar
Mullins, M., Hammerschmidt, M., Haffter, P. & Nusslein-Volhard, C. (1994). Large-scale mutagenesis in the zebrafish: In search of genes controlling developing in a vertebrate. Current Biology 4, 189202.CrossRefGoogle Scholar
Nelson, R., Bender, A. & Connaughton, V. (2008). Transporter-mediated GABA responses in horizontal and bipolar cells of zebrafish retina. Visual Neuroscience 25, 155165.Google Scholar
Nelson, R. & Singla, N. (2009). A spectral model for signal elements isolated from zebrafish photopic electroretinogram. Visual Neuroscience 26, 349363.Google Scholar
Neuhauss, S., Biehlmaier, O., Seeliger, M., Das, T., Kohler, K., Harris, W. & Baier, H. (1999). Genetic disorders of vision revealed by a behavioral screen of 400 essential loci in zebrafish. The Journal of Neuroscience 19, 86038615.Google Scholar
Palmer, M. (2006). Functional segregation of synaptic GABAA and GABAC receptors in goldfish bipolar cell terminals. Journal of Physiology 577, 4553.Google Scholar
Pan, Z.-H. (2001). Voltage-activated Ca2+ channels and ionotropic GABA receptors localized to axon terminals of mammalian retinal bipolar cells. Visual Neuroscience 18, 279288.Google Scholar
Pang, J.-J., Gao, F. & Wu, S. (2004). Stratum-by-stratum projection of light response attributes by retinal bipolar cells of Ambystoma. Journal of Physiology 558, 249262.Google Scholar
Pardue, M., McCall, M., LaVail, M., Gregg, R. & Peachey, N. (1998). A naturally occurring mouse model of X-linked congenital stationary night blindness. Investigative Ophthalmology and Visual Science 39, 24432449.Google Scholar
Passini, M., Levine, E., Canger, A., Raymond, P. & Schechter, N. (1997). Vsx-1 and Vsx-2: Differential expression of two paired-like homeobox genes during zebrafish and goldfish retinogenesis. The Journal of Comparative Neurology 388, 495505.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Patterson, W.I., McDowell, A., Hughes, A. & Bilotta, J. (2002). Opponent and nonopponent contributions to the zebrafish electroretinogram using heterochromatic flicker photometry. Journal of Comparative Physiology A 188, 283293.Google Scholar
Pesch, K., Zietz, C., Fries, J., Munscher, S., Pusch, C., Kohler, K., Berger, W. & Wissinger, B. (2003). Isolation of the mouse nyctalopin gene nyx and expression studies in mouse and rat retina. Investigative Ophthalmology and Visual Science 44, 22602266.Google Scholar
Protti, D., Flores, H.N. & Von Gersdorff, H. (2000). Light evokes Ca2+ spikes in the axon terminal of a retinal bipolar cell. Neuron 25, 215227.Google Scholar
Qian, H. & Dowling, J. (1995). GABAA and GABAC receptors on hybrid bass retinal bipolar cells. Journal of Neurophysiology 74, 19201928.Google Scholar
Qian, H., Li, L., Chappell, R. & Ripps, H. (1997). GABA receptors of bipolar cells from the skate retina: Actions of zinc on GABA-mediated membrane currents. Journal of Neurophysiology 78, 24022412.Google Scholar
Qian, H., Ripps, H., Schuette, E. & Chappell, R. (2001). Responses of small- and large-field bipolar cells to GABA and glycine. Brain Research 893, 273277.Google Scholar
Ragozzino, D., Woodward, R., Murata, Y., Eusebi, F., Overman, L. & Miledi, R. (1996). Design and in vitro pharmacology of a selective γ-aminobutyric acidC receptor antagonist. Molecular Pharmacology 50, 10241030.Google Scholar
Ren, J. & Li, L. (2004). Rod and cone signaling transmission in the retina of zebrafish: An ERG study. The International Journal of Neuroscience 114, 259270.Google Scholar
Saade, C. & Fadool, J. (2010). Remodeling of bipolar cell morphology in response to photoreceptor dystrophies in the retina of the zebrafish (Danio rerio). ARVO e-abstracts 2487.Google Scholar
Saszik, S., Alexander, A., Lawrence, T. & Bilotta, J. (2002). APB differentially affects the cone contributions to the zebrafish ERG. Visual Neuroscience 19, 521529.CrossRefGoogle Scholar
Schmitt, E. & Dowling, J. (1999). Early retinal development in the zebrafish, Danio rerio: Light and electron microscopic analysis. The Journal of Comparative Neurology 404, 515536.Google Scholar
Schmitz, F., Konigstorfer, A. & Sudhof, T. (2000). RIBEYE, a component of synaptic ribbons: A protein’s journey through evolution provides insight into synaptic ribbon function. Neuron 28, 857872.CrossRefGoogle ScholarPubMed
Scholes, J. (1975). Colour receptors, and their synaptic connections, in the retina of a cyprinid fish. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 270, 61115.Google Scholar
Schroeter, E., Wong, R. & Gregg, R. (2006). In vivo development of retinal ON-bipolar cell axon terminals visualized in nyx::MYFP transgenic zebrafish. Visual Neuroscience 23, 833843.Google Scholar
Seeliger, M., Rilk, A. & Neuhauss, S. (2002). Ganzfeld ERG in zebrafish larvae. Documenta Ophthalmologica 104, 5768.Google Scholar
Sherry, D., Micich, A. & Yazulla, S. (1993). Glycine in the lizard retina: Comparison to the GABA system. Visual Neuroscience 10, 693702.Google Scholar
Sherry, D. & Yazulla, S. (1993). Goldfish bipolar cells and axon terminal patterns: A Golgi study. The Journal of Comparative Neurology 329, 188200.Google Scholar
Solnica-Krezel, L., Schier, A. & Driever, W. (1994). Efficient recovery of ENU-induced mutations from the zebrafish germline. Genetics 136, 14011420.Google Scholar
Stearns, G., Evangelista, M., Fadool, J. & Brockerhoff, S. (2007). A mutation in the cone-specific pde6 gene causes rapid cone photoreceptor degeneration in zebrafish. The Journal of Neuroscience 27, 1386613874.Google Scholar
Stockton, R. & Slaughter, M. (1989). B-wave of the electoretinogram. A reflection of ON bipolar cell activity. Journal of Physiology 95, 101122.Google Scholar
Stujenske, J., Emran, F. & Dowling, J. (2010). The bug eye mutant zebrafish exhibits visual deficits that arise with the onset of an enlarged eye phenotype. ARVO e-abstracts 5578.Google Scholar
Tachibana, M. & Kaneko, A. (1987). γ−Aminobutyric acid exerts a local inhibitory action on the axon terminal of bipolar cells: Evidence for negative feedback from amacrine cells. Proceedings of the National Academy of Sciences of the United States of America 84, 35013505.Google Scholar
Taylor, M., Hurley, J., Van Epps, H. & Brockerhoff, S. (2004). A zebrafish model for pyruvate dehydrogenase deficiency: Rescue of neurological dysfunction and embryonic lethality using a ketogenic diet. Proceedings of the National Academy of Sciences of United States of America 101, 45844589.Google Scholar
Taylor, M., Kikkawa, S., Diez-Juan, A., Ramamurthy, V., Kawakami, K., Carmeliet, P. & Brockerhoff, S. (2005). The zebrafish pob gene encodes a novel protein required for survival of red cone photoreceptor cells. Genetics 170, 263273.Google Scholar
Van Epps, H., Hayashi, M., Lucast, L., Stearns, G., Hurley, J., De Camilli, P. & Brockerhoff, S. (2004). The zebrafish nrc mutant reveals a role for the polyphosphoinositide phosphatase synaptojanin 1 in cone photoreceptor ribbon anchoring. The Journal of Neuroscience 24, 86418650.Google Scholar
Vandenbranden, C., Kamphuis, W., Nunes Cardozo, B. & Kamermans, M. (2000). Expression and localization of ionotropic glutamate receptor subunits in the goldfish retina—An in situ hybridization and immunocytochemical study. Journal of Neurocytology 29, 729742.Google Scholar
Vigh, J. & von Gersdorff, H. (2005). Prolonged reciprocal signaling via NMDA and GABA receptors at a retinal ribbon synapse. The Journal of Neuroscience 25, 1141211423.Google Scholar
Vitorino, M., Jusuf, P., Maurus, D., Kimura, Y., Higashijima, S. & Harris, W. (2009). VSX2 in the zebrafish retina: Restricted lineages through derepression. Neural Development 4, 14.Google Scholar
Wan, L., Almers, W. & Chen, W. (2005). Two ribeye genes in teleosts: The role of ribeye in ribbon formation and bipolar cell development. The Journal of Neuroscience 25, 941949.Google Scholar
Weber, D., Connaughton, V., Dellinger, J., Klemer, D., Udvadia, A. & Carvan, M.I. (2008). Selenomethionine reduces visual deficits due to developmental methylmercury exposure. Physiology and Behavior 93, 250260.Google Scholar
Wei, X., Luo, Y. & Hyde, D. (2006). Molecular cloning of three zebrafish lin7 genes and their expression patterns in the retina. Experimental Eye Research 82, 122131.Google Scholar
Wong, K., Adolph, A. & Dowling, J. (2005). Retinal bipolar cell input mechanisms in giant danio I. Electroretinographic analysis. Journal of Neurophysiology 93, 8493.Google Scholar
Wong, K., Cohen, E. & Dowling, J. (2005). Retinal bipolar cell input mechanisms in giant danio II. Patch-clamp analysis of ON bipolar cells. Journal of Neurophysiology 93, 94107.Google Scholar
Wong, K. & Dowling, J. (2005). Retinal bipolar cell input mechanisms in giant danio III. ON-OFF bipolar cells and their color-opponent mechanisms. Journal of Neurophysiology 94, 265272.Google Scholar
Wong, K., Gray, J., Hayward, C., Adolph, A. & Dowling, J. (2004). Glutamatergic mechanisms in the outer retina of larval zebrafish: Analysis of electroretinogram b- and d-waves using anovel preparation. Zebrafish 1, 121131.Google Scholar
Wu, S., Gao, F. & Maple, B. (2000). Functional architecture of synapses in the inner retina: Segregation of visual signals by stratification of bipolar cell axon terminals. The Journal of Neuroscience 20, 44624470.Google Scholar
Xu, X. & Karwoski, C. (1995). Current source density analysis of the electrographic d wave of frog retina. Journal of Neurophysiology 73, 24592469.Google Scholar
Yang, C.-Y. (1998). γ-Aminobutyric acid transporter-mediated current from bipolar cells in tiger salamander retinal slices. Vision Research 38, 25212526.Google Scholar
Yazulla, S. & Studholme, K. (1990). Multiple subtypes of glycine-immunoreactive neurons in the goldfish retina: Single- and double-label studies. Visual Neuroscience 4, 299309.Google Scholar
Yazulla, S. & Studholme, K. (1991). Glycine-receptor immunoreactivity in retinal bipolar cells is postsynaptic to glycinergic and GABAergic amacrine cell synapses. The Journal of Comparative Neurology 310, 1120.Google Scholar
Yazulla, S. & Studholme, K. (1998). Differential distribution of Shaker-like and Shab-like K+-channel subunits in goldfish retina and retinal bipolar cells. The Journal of Comparative Neurology 396, 131140.Google Scholar
Yazulla, S. & Studholme, K. (2001). Neurochemical anatomy of the zebrafish retina as determined by immunocytochemistry. Journal of Neurocytology 30, 551592.CrossRefGoogle ScholarPubMed
Yazulla, S., Studholme, K., Fan, S. & Mora-Ferrer, C. (2001). Neuromodulation of voltage-dependent K+ channels in bipolar cells: Immunocytochemical and electrophysiological studies. Progress in Brain Research 131, 201213.Google Scholar
Yu, C.-J. & Li, L. (2005). Dopamine modulates voltage-activated potassium currents in zebrafish retinal ON bipolar cells. Journal of Neuroscience Research 82, 368376.Google Scholar
Zenisek, D., Henry, D., Studholme, K., Yazulla, S. & Matthews, G. (2001). Voltage-dependent sodium channels are expressed in nonspiking retinal bipolar neurons. The Journal of Neuroscience 21, 45434550.Google Scholar
Zhao, X.-F., Ellingsen, S. & Fjose, A. (2009). Labelling and targeted ablation of specific bipolar cell types in the zebrafish retina. BMC Neuroscience 10, 107.Google Scholar