Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-02T02:50:42.037Z Has data issue: false hasContentIssue false

Selective depletion of beta cells affects the development of alpha cells in cat retina

Published online by Cambridge University Press:  02 June 2009

Steven J. Ault
Affiliation:
Department of Anatomy, University of Utah, School of Medicine, Salt Lake City
Kirk G. Thompson
Affiliation:
Department of Anatomy, University of Utah, School of Medicine, Salt Lake City
Yifeng Zhou
Affiliation:
Department of Biology, University of Science and Technology of China, People’s Republic of China
Audie G. Leventhal
Affiliation:
Department of Anatomy, University of Utah, School of Medicine, Salt Lake City

Abstract

The results of previous studies suggest that class-specific interactions contribute to the development of the different classes of retinal ganglion cells. We tested this hypothesis by examining the morphologies and distributions of alpha (α) cells in regions of mature cat retina selectively depleted of beta (β) cells as a result of visual cortex lesions at birth. We find that α cells in regions of central retina depleted of β cells are abnormally large while α cells in regions of peripheral retina depleted of β cells are abnormally small. The normal central-to-peripheral α cell soma-size gradient is absent in hemiretinae depleted of β cells. The dendritic fields of α cells in the border of β-cell-depleted hemiretina extend preferentially into the β-cell-poor hemiretina. In spite of this, α cell bodies retain their normal retinal distribution and remain distributed in a nonrandom mosaic-like pattern. Thus, it appears that the development of α retinal ganglion cells is influenced by interactions both with other α cells (class-specific interactions) and with surrounding β cells (nonclass-specific interactions).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ault, S.J. & Leventhal, A.G. (1988). Postnatal development of cat retinal ganglion cell structure. Society for Neuroscience Abstracts 14, 459.Google Scholar
Ault, S.J., Thompson, K.G., Zhou, Y. & Leventhal, A.G. (1990 a). The density of beta cells affects the sizes of alpha cells in cat retina. Society for Neuroscience Abstracts 16, 334.Google Scholar
Ault, S.J., Zhou, Y., Thompson, K.G. & Leventhal, A.G. (1990 b). Receptive field properties of LGNd relay cells in optic tract sectioned cats. Investigative Ophthalmology and Visual Science 31(4), 395.Google Scholar
Ault, S.J., Thompson, K.G., Zhou, Y. & Leventhal, A.G. (1991). Mechanisms mediating cat retinal ganglion cell development. Society for Neuroscience Abstracts 17, 186.Google Scholar
Batschelet, E. (1981). Circular Statistics in Biology. London: Academic Press.Google Scholar
Boycott, B.B. & Wässle, H. (1974). The morphological types of ganglion cells of the domestic cat’s retina. Journal of Physiology (London) 240, 397419CrossRefGoogle ScholarPubMed
Cleland, B.G. & Levick, W.R. (1974 a). Brisk and sluggish concentrically organized ganglion cells in the cat’s retina. Journal of Physiology (London) 240, 421456CrossRefGoogle ScholarPubMed
Cleland, B.G. & Levick, W.R. (1974 b). Properties of rarely encountered types of ganglion cells in the cat’s retina and an overall classification. Journal of Physiology (London) 240, 457492CrossRefGoogle Scholar
Cleland, B.G., Levick, W.R. & Wässle, H. (1975). Physiological identification of a morphological class of cat retinal ganglion cells. Journal of Physiology (London) 248, 151171CrossRefGoogle ScholarPubMed
Cooper, M.L. & Pettigrew, J.D. (1979). The decussation of the retinothalamic pathway in the cat, with a note on the major meridians of the cat’s eye. Journal of Comparative Neurology 187, 285312CrossRefGoogle ScholarPubMed
Dann, J.F., Buhl, E.H. & Peichl, L. (1987). Dendritic maturation in cat retinal ganglion cells: A lucifer yellow study. Neuroscience Letters 80, 2126CrossRefGoogle ScholarPubMed
Dann, J.F., Buhl, E.H. & Peichl, L. (1988). Postnatal dendritic maturation of alpha and beta ganglion cells in cat retina. Journal of Neuroscience 8, 14851499CrossRefGoogle ScholarPubMed
Enroth-Cugell, C. & Robson, J.G. (1966). The contrast sensitivity of retinal ganglion cells of the cat. Journal of Physiology (London) 187, 517552CrossRefGoogle ScholarPubMed
Eysel, U.T., Peichl, L. & Wässle, H. (1985). Dendritic plasticity in the early postnatal feline retina: Quantitative characteristics and sensitive period. Journal of Comparative Neurology 242, 134145CrossRefGoogle ScholarPubMed
Freed, M.A. & Sterling, P. (1988). The ON-alpha ganglion cell of the cat retina and its presynaptic cell types. Journal of Neuroscience 8, 23032320CrossRefGoogle ScholarPubMed
Fukuda, Y. & Stone, J. (1974). Retinal distribution and central projections of Y-, X- and W-cells of the cat’s retina. Journal of Neurophysiology 37, 749772CrossRefGoogle Scholar
Humphreys, T. (1972). Cell contact, contact inhibition of growth and the regulation of macromolecular metabolism. In Cell Interactions, Proceedings of the Third Lepetit Colloquium, ed. Silvestri, L.G., pp. 264276. Amsterdam: North-Holland Publishing Co.Google Scholar
Illing, R.-B. & Wässle, H. (1981). The retinal projection to the thalamus in the cat: A quantitative investigation and a comparison with the retinotectal pathway. Journal of Comparative Neurology 202, 265285CrossRefGoogle Scholar
Jeffery, G., Whitmore, A. & Grant, S. (1992). The mosaic of alpha cells in the cat retina is not dependent on axon terminal interactions during development. Journal of Comparative Neurology 317, 298308CrossRefGoogle Scholar
Kalil, R.E. (1980). Retrograde degeneration of retinal ganglion cells following removal of visual cortex in the newborn kitten. Society for Neuroscience Abstracts 790, 6.Google Scholar
Kirby, M.A. & Chalupa, L.M. (1986). Retinal crowding alters the morphology of alpha ganglion cells. Journal of Comparative Neurology 251, 532541CrossRefGoogle ScholarPubMed
Kirk, D.L., Levick, W.R., Cleland, B.G. & Wässle, H. (1976). Crossed and uncrossed representations of the visual field by brisk-sustained and brisk-transient cat retinal ganglion cells. Vision Research 16, 225231CrossRefGoogle ScholarPubMed
Leventhal, A.G. (1982). Morphology and distribution of retinal ganglion cells projecting to different layers of the dorsal lateral geniculate nucleus in normal and Siamese cats. Journal of Neuroscience 2, 10241042CrossRefGoogle ScholarPubMed
Leventhal, A.G., Ault, S.J., Vitek, D.J. & Shou, T. (1989). Extrinsic determinants of retinal ganglion cell development in primates. Journal of Comparative Neurology 286, 170189CrossRefGoogle ScholarPubMed
Leventhal, A.G., Rodieck, R. & Dreher, B. (1985). Central projections of cat retinal ganglion cells. Journal of Comparative Neurology 237, 216226CrossRefGoogle ScholarPubMed
Leventhal, A.G. & Schall, J.D. (1983). Structural basis of orientation sensitivity of cat retinal ganglion cells. Journal of Comparative Neurology 220, 465475CrossRefGoogle ScholarPubMed
Leventhal, A.G., Schall, J.D. & Ault, S.J. (1988). Extrinsic determinants of retinal ganglion cell structure in the cat. Journal of Neuroscience 8, 20282038CrossRefGoogle ScholarPubMed
Levick, W.R. & Thibos, L.N. (1982). Analysis of orientation bias in cat retina. Journal of Physiology (London) 329, 243261CrossRefGoogle ScholarPubMed
Mardia, K.V. (1972). Statistics of Directional Data. New York: Academic Press.Google Scholar
Maslim, J., Webster, M. & Stone, J. (1986). Stages in the structural differentiation of retinal ganglion cells. Journal of Comparative Neurology 254, 382402CrossRefGoogle ScholarPubMed
Payne, B.R., Pearson, H.E. & Cornwall, P. (1984). Transneuronal degeneration of beta retinal ganglion cells in the cat. Proceedings of the Royal Society 222, 1532Google ScholarPubMed
Peichl, L. & Wässle, H. (1981). Morphological identification of on-and off-centre brisk transient (Y) cells in the cat retina. Proceedings of the Royal Society 212, 139156Google ScholarPubMed
Perry, V.H. & Linden, R. (1982). Evidence for dendritic competition in the developing retina. Nature 297, 683685CrossRefGoogle ScholarPubMed
Ramoa, A.S., Campbell, G. & Shatz, C (1987). Transient morphological features of identified ganglion cells in living fetal and neonatal retina. Science 237, 522525CrossRefGoogle ScholarPubMed
Ramoa, A.S., Campbell, G. & Shatz, C. (1988). Dendritic growth and remodeling of cat retinal ganglion cells during fetal and postnatal development. Journal of Neuroscience 8, 42394261CrossRefGoogle ScholarPubMed
Rapaport, D.H. & Stone, J. (1983). Time course of morphological differentiation of cat retinal ganglion cells: Influences on soma size. Journal of Comparative Neurology 221, 4252CrossRefGoogle ScholarPubMed
Rowe, M.H. (1990). Evidence for degeneration of retinal W cells following early visual cortical removal in cats. Brain, Behavior and Evolution 35, 253267CrossRefGoogle ScholarPubMed
Schall, J.D., Ault, S.J., Vitek, D.J. & Leventhal, A.G. (1988). Experimental induction of an abnormal ipsilateral visual field representation in the geniculocortical pathway of normally pigmented cats. Journal of Neuroscience 8, 20392048CrossRefGoogle ScholarPubMed
Schall, J.D. & Leventhal, A.G. (1987). Relationships between ganglion cell dendritic structure and retinal topography in the cat. Journal of Comparative Neurology 257, 149159CrossRefGoogle ScholarPubMed
Schall, J.D., Vitek, D.J. & Leventhal, A.G. (1986). Retinal constraints on orientation specificity in the cat visual cortex. Journal of Neuroscience 6, 823836CrossRefGoogle ScholarPubMed
Shou, T. & Leventhal, A.G. (1989). Organized arrangement of orientation sensitive relay cells in the cat’s lateral geniculate nucleus. Journal of Neuroscience 9, 42874302CrossRefGoogle Scholar
Stone, J. (1966). The naso-temporal division of the cat’s retina. Journal of Comparative Neurology 136, 585600Google Scholar
Stone, J. & Fukuda, Y. (1974). Properties of the cat retinal ganglion cells: A comparison of W-cells with X- and Y-cells. Journal of Neurophysiology 37, 722748CrossRefGoogle ScholarPubMed
Sur, M., Esguerra, M., Garraghty, P.E., Kritzer, M.F. & Sherman, S.M. (1987). Morphology of physiologically identified retinogeniculate X- and Y-cell axons in the cat. Journal of Neurophysiology 58, 132CrossRefGoogle Scholar
Sur, M. & Sherman, S.M. (1982). Retinogeniculate terminations in cats: Morphological differences between X and Y cell axons. Science 218, 389391CrossRefGoogle ScholarPubMed
Wässle, H. & Boycott, B.B. (1991). Functional architecture of the mammalian retina. Physiological Reviews 71(2), 447478CrossRefGoogle ScholarPubMed
Wässle, H., Peichl, L. & Boycott, B.B. (1981 a). Dendritic territories of cat retinal ganglion cells. Nature 292, 344345CrossRefGoogle ScholarPubMed
Wässle, H., Peichl, L. & Boycott, B.B. (1981 b). Morphology and topography of on- and off-alpha cells in cat retina. Proceedings of the Royal Society B (London) 212, 157175Google Scholar
Wässle, H., Boycott, B.B. & Illing, R.-B. (1981 C). Morphology and mosaic of on- and off-beta cells in the cat retina and some functional considerations. Proceedings of the Royal Society B (London) 212, 177195Google Scholar
Wässle, H. & Riemann, H.J. (1978). The mosaic of nerve cells in the mammalian retina. Proceedings of the Royal Society 200, 441461Google ScholarPubMed
Wörgötter, F. & Eysel, U.T. (1987). Quantitative determination of orientation and direction components in the response of visual cortical cells to moving stimuli. Biological Cybernetics 57, 349355CrossRefGoogle ScholarPubMed
Zar, J.H. (1974). Circular distributions. In Biostatistical Analysis, pp. 310328. Englewood Cliffs, New Jersey: Prentice-Hall.Google Scholar