Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-kbvt8 Total loading time: 0.285 Render date: 2021-10-17T14:08:52.897Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Nicotinic acetylcholine receptors in the ground squirrel retina: Localization of the β4 subunit by immunohistochemistry and in situ hybridization

Published online by Cambridge University Press:  02 June 2009

Luiz R. G. Britto
Affiliation:
Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, SP (Brazil)
Scott W. Rogers
Affiliation:
Department of Pharmacology, University of Colorado Health Science Center, Denver
Dânia E. Hamassaki-Britto
Affiliation:
Department of Histology and Embryology, Institute of Biomedical Sciences, University of São Paulo, 05508 São Paulo, SP (Brazil)
Robert M. Duvoisin
Affiliation:
Margaret M. Dyson Vision Research Institute, Cornell University Medical College, New York

Abstract

Immunohistochemical and in situ hybridization techniques were used to localize the β4 subunit of the neuronal nicotinic acetylcholine receptors (nAChRs) in the ground squirrel retina. The β4 nAChR subunit was detected in both transverse and horizontal sections of the retina using a subunit-specific antiserum and the avidin-biotin complex technique. Two bands of labeled processes were seen in the inner plexiform layer, corresponding approximately to the laminae where the cholinergic cells arborize. Labeled cells were found in the ganglion cell layer and the inner third of the inner nuclear layer. The cells in the ganglion cell layer were medium- to large-sized and were frequently observed to give rise to axon-like processes. Most of the labeled neurons in the inner nuclear layer were small presumptive amacrine cells, but a few medium-to-large cells were also labeled. These could constitute a different class of amacrine cells or displaced ganglion cells. The latter possibility is supported by the existence of nAChR-containing displaced ganglion cells in the avian retina. In situ hybridization with a 35S-labeled cRNA probe revealed the expression of mRNA coding for the nAChR β4 subunit in the ganglion cell layer and the inner third of the inner nuclear layer. This finding confirmed the immunohistochemical data of the cellular localization of β4 nAChR subunit.

These results indicate that the β4 nAChR subunit is expressed by specific subtypes of neurons on the ground squirrel retina. As the expression of that particular nAChR subunit appears to be very limited in the brain, the present data suggest that the retina might represent a useful model to study the function of nAChRs containing the β4 subunit.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aizenman, E., Loring, R.H. & Lipton, S.A. (1990). Blockade of nicotinic responses in rat retinal ganglion cells by neuronal bungaro-toxin. Brain Research 517, 209214.CrossRefGoogle Scholar
Ariel, M. & Daw, N. (1982 a). Effects of cholinergic drugs on receptive field properties of rabbit retinal ganglion cells. Journal of Physiology 324, 135160.CrossRefGoogle ScholarPubMed
Ariel, M. & Daw, N. (1982 b). Pharmacological analysis of direction-ally sensitive rabbit retinal ganglion cells. Journal of Physiology 324, 161186.CrossRefGoogle ScholarPubMed
Boulter, J., Connolly, J., Deneris, E., Goldman, S., Heinemann, S. & Patrick, J. (1987). Functional expression of two neuronal nicotinic acetylcholine receptors from cDNA clones identifies a gene family. Proceedings of the National Academy of Sciences of the U.S.A. 48, 77637767.CrossRefGoogle Scholar
Britto, L.R.G. (1983). Retinal ganglion cells of the pigeon accessory optic system. Brazilian Journal of Medical and Biological Research 16, 357363.Google ScholarPubMed
Britto, L.R.G., Keyser, K.T., Hamassaki, D.E. & Karten, H.J. (1988). Catecholaminergic subpopulation of retinal displaced ganglion cells projects to the accessory optic nucleus in the pigeon. (Columba livia). Journal of Comparative Neurology 269, 109117.CrossRefGoogle ScholarPubMed
Britto, L.R.G., Hamassaki-Britto, D.E., Ferro, E.S., Keyser, K.T., Karten, H.J. & Lindstrom, J.M. (1992 a). Neurons of the chick brain and retina expressing both alpha-bungarotoxin-sensitive and alpha-bungarotoxin-insensitive nicotinic acetylcholine receptors: An immunohistochemical analysis. Brain Research 590, 193200.CrossRefGoogle ScholarPubMed
Britto, L.R.G., Keyser, K.T., Lindstrom, J.M. & Karten, H.J. (1992 b). Immunohistochemical localization of nicotinic acetylcholine receptor subunits in the mesencephalon and diencephalon of the chick (Gallus gallus). Journal of Comparative Neurology 317, 325340.CrossRefGoogle Scholar
Cachelin, A.B. & Jaggi, R. (1991). β-subunits determine the time course of desensitization in rat α3 neuronal nicotinic acetylcholine receptors. Pflügers Archives 419, 545551.CrossRefGoogle Scholar
Cauley, K., Agranoff, B.W. & Goldman, D. (1990). Multiple nicotinic acetylcholine receptor genes are expressed in goldfish retina and tectum. Journal of Neuroscience 10, 670683.CrossRefGoogle ScholarPubMed
Clarke, P.B.S., Hamill, G.S., Nadi, N.S., Jacobowttz, D.M. & Pert, A.J. (1986). 3H-nicotine and 125I-alpha-bungarotoxin-labeled nicotinic receptors in the interpeduncular nucleus of rats. II. Effects of habenular deafferentation. Journal of Comparative Neurology 251, 407413.CrossRefGoogle ScholarPubMed
Conley, M., Fitzpatrick, D. & Lachica, E.A. (1986). Laminar asymmetry in the distribution of choline acetyltransferase-immunoreactive neurons in the retina of the tree shrew (Tupaia belangeri). Brain Research 399, 332338.CrossRefGoogle Scholar
Conroy, W.G., Vernallis, A.B. & Berg, D. (1992). The alpha5 gene product assembles with multiple acetylcholine receptor subunits to form distinctive receptor subtypes in brain. Neuron 9, 120.CrossRefGoogle Scholar
Cooper, E., Couturier, S. & Ballivet, M. (1991). Pentameric structure and subunit stoichiometry of a neuronal acetylcholine receptor. Nature 350, 235238.CrossRefGoogle Scholar
Couturier, S., Bertrand, D., Matter, J.-M., Hernandez, M.-C, Bertrand, S., Millar, N., Valera, S., Barkas, T. & Ballivet, M. (1990). A neuronal nicotinic acetylcholine receptor subunit (α7) is developmentally regulated and forms a homo-oligomeric channel blocked by α-BTX. Neuron 5, 847856.CrossRefGoogle Scholar
Deneris, E.S., Connolly, J., Boulter, J., Wada, E., Wada, K., Swanson, L.W., Patrick, J. & Heinemann, S. (1988). Primary structure and expression of beta2: A novel subunit of neuronal nicotinic acetylcholine receptors. Neuron 1, 4554.CrossRefGoogle Scholar
Deneris, E.S., Connolly, J., Rogers, S.W. & Duvoisin, R. (1991). Pharmacological and functional diversity of neuronal nicotinic acetylcholine receptors. Trends in Pharmacological Sciences 12, 3440.CrossRefGoogle ScholarPubMed
Deutch, A.Y., Holliday, J., Roth, R.H., Chun, L.L.Y. & Hawrot, E. (1987). Immunohistochemical localization of a neuronal nicotinic acetylcholine receptor in mammalian brain. Proceedings of the National Academy of Sciences of the U.S.A. 84, 86978701.CrossRefGoogle ScholarPubMed
Dinneley-Miller, K. & Patrick, J. (1992). Gene transcripts for the nicotinic acetylcholine receptor subunit, β4, are distributed in multiple areas of the rat central nervous system. Molecular Brain Research 16, 339344.CrossRefGoogle Scholar
Duvoisin, R.M., Deneris, E.S., Patrick, J. & Heinemann, S. (1989). The functional diversity of the neuronal nicotinic acetylcholine receptors is increased by a novel subunit: β4. Neuron 3, 487496.CrossRefGoogle Scholar
Famiglietti, E.V. & Tumosa, N. (1987). Immunocytochemical staining of cholinergic amacrine cells in rabbit retina. Brain Research 413, 398403.CrossRefGoogle ScholarPubMed
Flores, C.M., Rogers, S.W., Pabreza, L.A., Wolfe, B.B. & Kellar, K.J. (1992). A subtype of nicotinic cholinergic receptor in rat brain is composed of α4 and β2 subunits and is up-regulated by chronic nicotine treatment. Molecular Pharmacology 41, 3137.Google Scholar
Freeman, J.A. (1977). Possible regulatory function of acetylcholine receptor in maintenance of retinotectal synapse. Nature 269, 218222.CrossRefGoogle Scholar
Goldman, D., Simmons, D., Swanson, L.W., Patrick, J. & Heinemann, S. (1986). Mapping of brain areas expressing RNA homologous to two different acetylcholine receptor a-subunit cDNAs. Proceedings of the National Academy of Sciences of the U.S.A. 83, 40764080.CrossRefGoogle Scholar
Goldman, D., Deneris, E., Luyten, W., Kochhar, A., Patrick, J. & Heinemann, S. (1987). Members of a nicotinic acetylcholine receptor gene family are expressed in different regions of the mammalian central nervous system. Cell 48, 965973.CrossRefGoogle ScholarPubMed
Hamassaki-Britto, D.E., Brzozowska-Prechtl, A., Karten, H.J., Lindstrom, J.M. & Keyser, K.T. (1991). GABA-like immunoreactive cells containing nicotinic acetylcholine receptors in the chick retina. Journal of Comparative Neurology 313, 394408.CrossRefGoogle ScholarPubMed
Hamassaki-Britto, D.E., Brzozowska-Prechtl, A., Karten, H.J., & Lindstrom, J.M. (1993). Bipolar cells of the chick retina containing α-bungarotoxin-sensitive nicotinic acetylcholine receptors. Visual Neuroscience 11, 6370.CrossRefGoogle Scholar
Henley, J.M., Lindstrom, J.M. & Oswald, R.E. (1986). Acetylcholine receptor synthesis in retina and transport to optic tectum in goldfish. Science 232, 16271629.CrossRefGoogle ScholarPubMed
Hill, J.A. Jr, Zoli, M., Bourgeois, J.-P. & Changeux, J.-P. (1993). Immunocytochemical localization of a neuronal nicotinic receptor: The β2 subunit. Journal of Neuroscience 13, 15511568.CrossRefGoogle Scholar
Hoover, F. & Goldman, D. (1992). Temporally correlated expression of nAChR genes during development of the mammalian retina. Experimental Eye Research 54, 561571.CrossRefGoogle ScholarPubMed
Hughes, T.E., Carey, R.G., Vitorica, J., De Blas, A.L. & Karten, H.J. (1989). Immunohistochemical localization of GABAA receptors in the retina of the primate (Saimiri sciureus). Visual Neuroscience 2, 565581.CrossRefGoogle Scholar
Hughes, T.E., Grunert, U. & Karten, H.J. (1991). GABAA receptors in the retina of the cat: An immunohistochemical study of whole-mounts, sections, and dissociated cells. Visual Neuroscience 6, 229238.CrossRefGoogle Scholar
Ikeda, H. & Sheardown, M.J. (1982). Acetylcholine may be an excitatory transmitter mediating visual excitation of “transient” cells with the periphery effect in the cat retina: Iontophoretic studies in vivo. Neuroscience 7, 12991308.CrossRefGoogle ScholarPubMed
Keyser, K.T., Hughes, T.E., Whiting, P.J., Lindstrom, J.M. & Karten, H.J. (1988). Cholinoceptive neurons in the retina of the chick: An immunohistochemical study of the nicotinic acetylcholine receptors. Visual Neuroscience 1, 349366.CrossRefGoogle ScholarPubMed
Keyser, K.T., Britto, L.R.G., Schoepfer, R., Whiting, P., Cooper, J., Conroy, W., Brzozowska-Prechtl, A., Karten, H.J. & Lindstrom, J.M. (1993). Three subtypes of α-bungarotoxin-sensitive nicotinic acetylcholine receptors are expressed in chick retina. Journal of Neuroscience 13, 442454.CrossRefGoogle ScholarPubMed
Langdon, R.B. & Freeman, J.A. (1987). Pharmacology of retinotectal transmission in the goldfish: Effects of nicotinic ligands, strychnine, and kynurenic acid. Journal of Neuroscience 7, 760773.CrossRefGoogle ScholarPubMed
Lindstrom, J., Schoepfer, R. & Whiting, P. (1987). Molecular studies of the neuronal acetylcholine receptor family. Molecular Neurobiology 1, 281337.CrossRefGoogle ScholarPubMed
Lipton, S.A., Aizenman, A. & Loring, R.H. (1987). Neural nicotinic acetylcholine responses in solitary mammalian retinal ganglion cells. Pfluegers Archives 410, 3743.CrossRefGoogle ScholarPubMed
Lipton, S.A., Frosch, M.P., Phillips, M., Tauck, D.L. & Aizenman, E. (1988). Nicotinic antagonists enhance process outgrowth by rat retinal ganglion cells in culture. Science 239, 12931296.CrossRefGoogle ScholarPubMed
Listerud, M., Brussaard, A.B., Devay, P., Colman, D.R. & Role, L.W. (1991). Functional contribution of neuronal AChR subunits revealed by antisense oligonucleotides. Science 254, 15181521.CrossRefGoogle ScholarPubMed
Loring, R.H., Aizenman, E., Lipton, S.A. & Zigmond, R.E. (1989). Characterization of nicotinic receptors in chick retina using a snake venom neurotoxin that blocks neuronal nicotinic receptor function. Journal of Neuroscience 9, 24232431.CrossRefGoogle ScholarPubMed
Luetje, C.W. & Patrick, J. (1991). Both α- and β-subunits contribute to the agonist sensitivity of neuronal nicotinic acetylcholine receptors. Journal of Neuroscience 11, 837845.CrossRefGoogle ScholarPubMed
Masland, R.H. & Ames, A. (1976). Responses to acetylcholine of ganglion cells in an isolated mammalian retina. Journal of Neurophysiology 39, 12201235.CrossRefGoogle Scholar
Masland, R.H., Mills, J.W. & Hayden, S.A. (1984). The functions of acetylcholine in the rabbit retina. Proceedings of the Royal Society B (London) 223, 121139.CrossRefGoogle ScholarPubMed
Matter, J.M., Matter-Sadzinski, L. & Ballivet, M. (1990). Expression of neuronal nicotinic acetylcholine receptor genes in the developing chick visual system. EMBO Journal 9, 10211026.Google ScholarPubMed
Millar, T.J., Ishimoto, I., Johnson, C.D., Epstein, M.L., Chubb, I.W. & Morgan, I.G. (1985). Cholinergic and acetylcholinesterase-containing neurons of the chicken retina. Neuroscience Letters 74, 281285.CrossRefGoogle Scholar
Millar, T.J., Ishimoto, I., Chubb, I.W., Epstein, M.L., Johnson, C.D. & Morgan, I.G. (1987). Cholinergic amacrine cells of the chicken retina: A light and electron microscope immunocytochemical study. Neuroscience 21, 725743.CrossRefGoogle ScholarPubMed
Morris, B.J., Hicks, A.A., Wisden, W., Darlison, M.G., Hunt, S.P. & Barnard, E.A. (1990). Distinct regional expression of nicotinic acetylcholine receptor genes in chick brain. Molecular Brain Research 7, 306315.CrossRefGoogle ScholarPubMed
Papke, R.L. (1993). The kinetic properties of neuronal nicotinic receptors: Genetic basis of functional diversity. Progress in Neurobiology 41, 509531.CrossRefGoogle ScholarPubMed
Papke, R.L. & Heinemann, S. (1991). The role of the β4–subunit in determining the kinetic properties of rat neuronal nicotinic acetylcholine α3–receptors. Journal of Physiology 440, 95112.CrossRefGoogle Scholar
Papke, R.L., Duvoisin, R.M. & Heinemann, S. (1993). The amino terminal half of the nicotinic β subunit extracellular domain regulates the kinetics of inhibition by neuronal bungarotoxin. Proceedings of the Royal Society B (London) 252, 141148.CrossRefGoogle ScholarPubMed
Pourcho, R.G. & Osman, K. (1986). Cytochemical localization of cholinergic amacrine cells in cat retina. Journal of Comparative Neurology 247, 497504.CrossRefGoogle Scholar
Prusky, G.T. & Cynader, M.S. (1988). [3H] nicotine binding sites are associated with mammalian optic nerve terminals. Visual Neuroscience 1, 245248.CrossRefGoogle ScholarPubMed
Rogers, S.W., Hughes, T.E., Hollman, M., Gasic, G.P., Deneris, E.S. & Heinemann, S. (1991). The characterization and localization of the glutamate receptor subunit GluRl in the rat brain. Journal of Neuroscience 11, 27132724.CrossRefGoogle Scholar
Rogers, S.W., Mandelzys, A., Deneris, E.S., Cooper, E. & Heinemann, S. (1992). The expression of nicotinic acetylcholine receptors by PC12 cells treated with NGF. Journal of Neuroscience 12, 46114623.CrossRefGoogle ScholarPubMed
Role, L.W. (1992). Diversity in primary structure and function of neuronal nicotinic acetylcholine receptor channels. Current Opinion in Neurobiology 2, 254262.CrossRefGoogle ScholarPubMed
Sargent, P.B., Pike, S.H., Nadel, D.B. & Lindstrom, J.M. (1989). Nicotinic acetylcholine receptor-like molecules in the retina, retinotectal pathway, and optic tectum of the frog. Journal of Neuroscience 9, 565573.CrossRefGoogle ScholarPubMed
Schmidt, J. (1988). Biochemistry of nicotinic acetylcholine receptors in the vertebrate retina. International Review of Neurobiology 30, 138.CrossRefGoogle Scholar
Schoepfer, R., Conroy, W.G., Whiting, P., Gore, M. & Lindstrom, J. (1990). Brain α-bungarotoxin binding protein cDNAs and MAbs reveal subtypes of this branch of the ligand-gated ion channel gene superfamily. Neuron 5, 3548.CrossRefGoogle ScholarPubMed
Spira, A.W., Millar, T.J., Ishimoto, I., Epstein, M.L., Johnson, C.D., Dahl, J.L. & Morgan, I.G. (1987). Localization of choline acetyltransferase-like immunoreactivity in the embryonic chick retina. Journal of Comparative Neurology 260, 526538.CrossRefGoogle ScholarPubMed
Stollberg, J. & Berg, D.K. (1987). Neuronal acetylcholine receptors: Fate of surface and internal pools in cell culture. Journal of Neuroscience 7, 18091815.CrossRefGoogle ScholarPubMed
Swanson, L.W., Simmons, D.M., Whiting, P.J. & Lindstrom, J. (1987). Immunohistochemical localization of neuronal nicotinic receptors in the rodent central nervous system. Journal of Neuroscience 7, 33343342.CrossRefGoogle ScholarPubMed
Vaney, D.I. (1990). The mosaic of amacrine cells in the mammalian retina. Progress in Retinal Research 9, 49100.CrossRefGoogle Scholar
Vernino, S., Amador, M., Luetje, C.W., Patrick, J. & Dani, J.A. (1992). Calcium modulation and high calcium permeability of neuronal nicotinic acetylcholine receptors. Neuron 8, 127134.CrossRefGoogle ScholarPubMed
Vogel, Z. & Nirenberg, M. (1976). Localization of acetylcholine receptors during synaptogenesis in retina. Proceedings of the National Academy of Sciences of the U.S.A. 73, 18061810.CrossRefGoogle ScholarPubMed
Vogel, Z., Maloney, G.J., Ling, A. & Daniels, M.P. (1977). Identification of synaptic acetylcholine receptor sites in retina with peroxidase-labeled alpha-bungarotoxin. Proceedings of the National Academy of Sciences of the U.S.A. 74, 32683272.CrossRefGoogle ScholarPubMed
Voigt, T. (1986). Cholinergic amacrine cells in the rat retina. Journal of Comparative Neurology 248, 1935.CrossRefGoogle ScholarPubMed
Wada, E., McKinnon, D., Heinemann, S., Patrick, J. & Swanson, L.W. (1990). The distribution of mRNA encoded by a new member of the neuronal nicotinic acetylcholine receptor gene family (α 5) in the rat central nervous system. Brain Research 526, 4553.CrossRefGoogle ScholarPubMed
Wada, E., Wada, K., Boulter, J., Deneris, E., Heinemann, S., Patrick, J. & Swanson, L.W. (1989). Distribution of alpha2, alpha3, alpha4 and beta2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: A hybridization histochemical study in the rat. Journal of Comparative Neurology 284, 314335.CrossRefGoogle Scholar
Whiting, P., Schoepfer, R., Conroy, W.G., Gore, M.J., Keyser, K.T., Shimasaki, S., Esch, F. & Lindstrom, J.M. (1991). Differential expression of nicotinic acetylcholine receptor subtypes in brain and retina. Molecular Brain Research 10, 6170.CrossRefGoogle ScholarPubMed
Zucker, C. & Yazulla, S. (1982). Localization of synaptic and non-synaptic nicotinic acetylcholine receptors in the goldfish retina. Journal of Comparative Neurology 204, 188195.CrossRefGoogle Scholar
16
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Nicotinic acetylcholine receptors in the ground squirrel retina: Localization of the β4 subunit by immunohistochemistry and in situ hybridization
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Nicotinic acetylcholine receptors in the ground squirrel retina: Localization of the β4 subunit by immunohistochemistry and in situ hybridization
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Nicotinic acetylcholine receptors in the ground squirrel retina: Localization of the β4 subunit by immunohistochemistry and in situ hybridization
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *