Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-29T01:57:35.231Z Has data issue: false hasContentIssue false

Multifocal and full-field electroretinogram changes associated with color-vision loss in mercury vapor exposure

Published online by Cambridge University Press:  05 April 2005

DORA F. VENTURA
Affiliation:
Instituto de Psicologia and Núcleo de Neurociências e Comportamento, Universidade de São Paulo, SP, Brazil
MARCELO T.V. COSTA
Affiliation:
Instituto de Psicologia and Núcleo de Neurociências e Comportamento, Universidade de São Paulo, SP, Brazil
MARCELO F. COSTA
Affiliation:
Instituto de Psicologia and Núcleo de Neurociências e Comportamento, Universidade de São Paulo, SP, Brazil
ADRIANA BEREZOVSKY
Affiliation:
Departamento de Oftalmologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brazil
SOLANGE R. SALOMÃO
Affiliation:
Departamento de Oftalmologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brazil
ANA LUÍZA SIMÕES
Affiliation:
Instituto de Psicologia and Núcleo de Neurociências e Comportamento, Universidade de São Paulo, SP, Brazil
MARCOS LAGO
Affiliation:
Instituto de Psicologia and Núcleo de Neurociências e Comportamento, Universidade de São Paulo, SP, Brazil
LUIZ H.M. CANTO PEREIRA
Affiliation:
Instituto de Psicologia and Núcleo de Neurociências e Comportamento, Universidade de São Paulo, SP, Brazil
MARCÍLIA A.M. FARIA
Affiliation:
Faculdade de Medicina, Universidade de São Paulo, SP, Brazil
JOHN M. DE SOUZA
Affiliation:
Instituto de Psicologia and Núcleo de Neurociências e Comportamento, Universidade de São Paulo, SP, Brazil
LUIZ CARLOS L. SILVEIRA
Affiliation:
Departamento de Fisiologia and Núcleo de Medicina Tropical, Universidade Federal do Pará, PA, Brazil

Abstract

We evaluated the color vision of mercury-contaminated patients and investigated possible retinal origins of losses using electroretinography. Participants were retired workers from a fluorescent lamp industry diagnosed with mercury contamination (n = 43) and age-matched controls (n = 21). Color discrimination was assessed with the Cambridge Colour Test (CCT). Retinal function was evaluated by using the ISCEV protocol for full-field electroretinography (full-field ERG), as well as by means of multifocal electroretinography (mfERG). Color-vision losses assessed by the CCT consisted of higher color-discrimination thresholds along the protan, deutan, and tritan axes and significantly larger discrimination ellipses in mercury-exposed patients compared to controls. Full-field ERG amplitudes from patients were smaller than those of the controls for the scotopic response b-wave, maximum response, sum of oscillatory potentials (OPs), 30-Hz flicker response, and light-adapted cone response. OP amplitudes measured in patients were smaller than those of controls for O2 and O3. Multifocal ERGs recorded from ten randomly selected patients showed smaller N1–P1 amplitudes and longer latencies throughout the 25-deg central field. Full-field ERGs showed that scotopic, photopic, peripheral, and midperipheral retinal functions were affected, and the mfERGs indicated that central retinal function was also significantly depressed. To our knowledge, this is the first demonstration of retinal involvement in visual losses caused by mercury toxicity.

Type
Research Article
Copyright
© 2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Berlin, M., Blomstrand, C., Grant, C.A., Hamberger, A., & Trofast, J. (1975). Tritiated methylmercury in the brain of squirrel monkeys. Archives of Environmental Health 30, 591597.CrossRefGoogle Scholar
Birch, D.G. (1989). Clinical electroretinography. In Assessment of Visual Function for the Clinician: Ophthalmology Clinics of North America, ed. Fuller, D.G. & Birch, D.G., pp. 469498. New York, W. B. Saunders.
Cavalleri, A. (1995). Colour vision in workers exposed to elemental mercury vapour. Toxicology Letters 77, 351356.CrossRefGoogle Scholar
Cavalleri, A. & Gobba, F. (1998). Reversible color vision loss in occupational exposure to metallic mercury. Environmental Research Section A 77, 173177.CrossRefGoogle Scholar
Damin, E. (2000). Alterações Psicofísicas do Sistema Visual Humano Relacionadas à Exposição ao Mercúrio. D.Sc. Thesis. Belém: Universidade Federal do Pará.
Faria, M.A.M. (2003). Mercurialismo metálico crônico ocupacional. (Chronic occupational metallic mercurialism.) Revista de Saúde Pública 37, 116127. (Abstract in English).CrossRefGoogle Scholar
Fox, D.A., Campbell, M.L., & Blocker, Y.S. (1997). Functional alterations and apoptotic cell death in the retina following developmental or adult lead exposure. Neurotoxicology 18, 645664.Google Scholar
Fox, D.A. & Sillman, A.J. (1979). Heavy metals affect rod, but not cone, photoreceptors. Science 206, 78.CrossRefGoogle Scholar
Gitter, S., Pardo, A., Kariv, N., & Yinon, U. (1988). Enhanced electroretinogram in cats induced by exposure to mercury acetate. Toxicology 51, 6776.CrossRefGoogle Scholar
Goto, Y., Shigematsu, J., Tobimatsu, S., Sakamoto, T., Kinukawa, N., & Kato, M. (2001). Different vulnerability of rat retinal cells to methylmercury exposure. Current Eye Research 23, 171178.CrossRefGoogle Scholar
Hawryshyn, C.W., MacKay, W.C., & Nilsson, T.H. (1982). Methyl mercury induced visual deficits in rainbow-trout. Canadian Journal of Zoology 60 (12), 31273133.CrossRefGoogle Scholar
Hood, D.C. (2000). Assessing retinal function with the multifocal technique Progress in Retinal and Eye Research 19, 607646.Google Scholar
Hood, D.C., Frishman, L.J., Saszik, S., & Viswanathan, S. (2002). Retinal origins of the primate multifocal ERG: Implications for the human response. Investigative Ophthalmology and Visual Science 43, 16731685.Google Scholar
Hunter, D. & Russell, D.S. (1954). Focal, cerebral and cerebelar atrophy in a human subject due to organic mercury compounds. Journal of Neurology and Neurosurgical Psychiatry 17, 235241.CrossRefGoogle Scholar
Iwata, K. & Abe, H. (1986). Neuroophthalmological and pathological studies of organic mercury poisoning, “Minamata Disease” in Japan. In Recent Advances in Minamata Disease Studie—Methylmercury Poisoning in Minamata and Niigata, Japan, ed. Tsubaki, T. & Takahashi, H., pp. 5874. Tokyo, Japan: Kodansha.
Korogi, Y., Takahashi, M., Shinzato, J., Okajima, T. (1994). MR findings in seven patients with organic mercury poisoning (Minamata disease). American Journal of Neuroradiolog 15, 15751578.Google Scholar
Korogi, Y., Takahashi, M., Hirai, T., Ikushima, I., Kitajima, M., Sugahara, T., Shigematsu, Y., Okajima, T., & Mukuno, K. (1997). Representation of the visual field in the striate cortex: Comparison of MR findings with visual field deficits in organic mercury poisoning (Minamata disease). American Journal of Neuroradiology 18, 11271130.Google Scholar
Lebel, J., Mergler, D., Lucotte, M., Amorim, M., Dolbec, J., Miranda, D., Mello, G.A., Rheault, I., & Pichet, P. (1996). Evidence of early nervous system dysfunction in Amazonian populations exposed to low-levels of methylmercury. Neuro Toxicology 17, 157168.Google Scholar
Lebel, J., Mergler, D., Branches, F., Lucotte, M., Amorim, M., Larribe, F., & Dolbec, J. (1998). Neurotoxic effects of low-level methylmercury contamination in the Amazon basin. Environmental Research Section A 79, 2032.CrossRefGoogle Scholar
Manahan, S. (1992). Toxicological Chemistry. Michigan: Lewis Publishers.
Matsumoto, S.C., Okagima, T., Inayoshi, S., & Ueno, H. (1988). Minamata disease demonstrated by computed tomography. Neuroradiology 30, 4246.CrossRefGoogle Scholar
Merigan, W.H. (1980). Visual fields and flicker thresholds in metyl-mercury-poisoned monkeys. In Neurotoxicity of the Visual System, ed. Merigan, W.H. & Weiss, B., pp. 149163. New York: Raven Press.
Merigan, W.H. (1989). Chromatic and achromatic vision of macaques: Role of the pathway. Journal of Neuroscience 9, 776783.CrossRefGoogle Scholar
Merigan, W.H. & Eskin, T.A. (1986). Spatiotemporal vision of macaques with severe loss of P-beta retinal ganglion cells. Vision Research 26, 17511761.CrossRefGoogle Scholar
Meyer-Baron, M., Schaeper, M., & Seeber, A. (2002). A meta-analysis for neurobehavioral results due to occupational mercury exposure. Archives of Toxicology 76, 127136.CrossRefGoogle Scholar
Mollon, J.D. & Reffin, J.P. (1989). A computer-controlled color-vision test that combines the principles of Chibret and of Stilling. Journal of Physiology (London) 414, P5.Google Scholar
Mollon, J.D. & Reffin, J.P. (2000). Handbook of the Cambridge Colour Test. London, UK: Cambridge Research Systems.
Mukuno, K., Ishikawa, S., & Okamuro, R. (1981). Grating test of contrast sensitivity in patients with Minamata disease. British Journal of Ophthalmology 65, 284290.CrossRefGoogle Scholar
Piao, C.H., Kondo, M., Nakamura, M., Terasaki, H., & Miyake, Y. (2003). Multifocal electroretinograms in X-linked retinoschisis Investigative Ophthalmology and Visual Science 44, 49204930.Google Scholar
Plunkett, E.R. (1976). Handbook of Industrial Toxicology. New York: Chemical Publishing.
Regan, B.C., Reffin, J.P., & Mollon, J.D. (1994). Luminance noise and the rapid-determination of discrimination ellipses in color deficiency. Vision Research 34, 12791299.CrossRefGoogle Scholar
Regan, B.C., Freudlander, N., Kolle, R., Mollon, J.D., & Paulus, W. (1998). Colour discrimination thresholds in Parkinson's disease: Results obtained with a rapid computer-controlled colour vision test. Vision Research 38, 34273431.CrossRefGoogle Scholar
Rice, D.C. & Gilbert, S.G. (1982). Early chronic low-level methylmercury poisoning in monkeys impairs spatial vision. Science 216 (4547), 759761.Google Scholar
Rothenberg, S.J., Lourdes, S., Salgado-Valladares, M., Casanueva, E., Geller, A.M., Hudnell, H.K., & Fox, D.A. (2002). Increased ERG a- and b-wave amplitudes in 7- to 10-year-old children resulting from prenatal lead exposure. Investigative Ophthalmology and Visual Science 43, 20362044.Google Scholar
Silveira, L.C.L., Damin, E.T.B., Pinheiro, M.C.N., Rodrigues, A.R., Moura, A.L.A., Côrtes, M.I.T., & Mello, G.A. (2003). Visual dysfunction following mercury exposure by breathing mercury vapour or by eating mercury-contaminated food. In Normal and Defective Colour Vision, ed. Mollon, J.D., Pokorny, J. & Knoblauch, K., pp. 407417. Oxford, UK: Oxford University Press.
Smith, V.C. & Pokorny, J. (2003). Color matching and color discrimination. In The Science of Color, Second edition, ed. Shevell, S.K., pp. 103148. Oxford, UK: OSA-Elsevier.CrossRef
Sutter, E.E. & Tran, D. (1992). The field topography of ERG components in man. I. The photopic luminance response. Vision Research 32, 433446.Google Scholar
Tessier-Lavigne, M., Mobbs, P., & Attwell, D. (1985). Lead and mercury toxicity and the rod light response. Investigative Ophthalmology and Visual Science 26, 11171122.Google Scholar
Tsubaki, T. & Takahashi, H. (1986). Recent Advances in Minamata Disease Studies—Methylmercury Poisoning in Minamata and Niigata, Japan. Tokyo, Japan: Kodansha.
Ventura, D.F., Costa, M.F., Gualtieri, M., Nishi, M., Bernick, M., Bonci, D., & De Souza, J.M. (2003a). Early vision loss in diabetic patients assessed by the Cambridge Colour Vision Test. In Normal and Defective Colour Vision, ed. Mollon, J.D., Pokorny, J. & Knoblauch, K., pp. 395403. New York: Oxford University Press.
Ventura, D.F, Silveira, L.C.L., Nishi, M., Costa, M.F., Gualtieri, M., Santos, R.M.A., Pinto, C.T., Moura, A.L.A., Rodrigues, A.R., Sakurada, C., Sauma, M.F.L.C., & De Souza, J.M. (2003b). Color vision loss in patients treated with chloroquine. Arquivos Brasileiros de Oftalmologia 66, 915.Google Scholar
Ventura, D.F, Silveira, L.C.L., Rodrigues, A.R., De Souza, J.M., Gualtieri, M., Bonci, D., & Costa, M.F. (2003c). Preliminary norms for the Cambridge Colour Test. In Normal and Defective Colour Vision, ed. Mollon, J.D., Pokorny, J. & Knoblauch, K., pp. 331339. New York: Oxford University Press.
Wachtmeister, L. (1998). Oscillatory potentials in retina: What do they reveal. Progress in Retinal and Eye Research 17, 485521.CrossRefGoogle Scholar
Warfvinge, K. & Bruun, A. (1996). Mercury accumulation in the squirrel monkey eye after mercury vapour exposure. Toxicology 107, 189200.CrossRefGoogle Scholar
Warfvinge, K. & Bruun, A. (2000). Mercury distribution in the squirrel monkey retina after in utero exposure to mercury vapour. Environmental Research 83, 102109.CrossRefGoogle Scholar
White, R.F., Feldman, R.G., Moss, N.B., & Proctor, S.P. (1993). Magnetic resonance imaging (MRI), neurobehavioral testing, and toxic encephalopathy: Two cases. Environmental Research 61, 117123.CrossRefGoogle Scholar
Zavariz, C. & Glina, D.M.R. (1992). Neuro-psychological clinical assessment of workers in an electric lamp factory exposed to metallic mercury. Revista de Saúde Pública 26, 356365.CrossRefGoogle Scholar