Hostname: page-component-7d8f8d645b-r82c8 Total loading time: 0 Render date: 2023-05-28T17:48:23.650Z Has data issue: false Feature Flags: { "useRatesEcommerce": true } hasContentIssue false

A method for determining photoreceptor signal-to-noise ratio in the time and frequency domains with a pseudorandom stimulus

Published online by Cambridge University Press:  02 June 2009

Eero Kouvalainen
Department of Physiology, Biocenter and ORBIS Sensorius Oulu, University of Oulu, Kajaanintie 52 A, 90220 Oulu, Finland
Matti Weckström
Department of Physiology, Biocenter and ORBIS Sensorius Oulu, University of Oulu, Kajaanintie 52 A, 90220 Oulu, Finland
Mikko Juusola
Department of Physiology, Biocenter and ORBIS Sensorius Oulu, University of Oulu, Kajaanintie 52 A, 90220 Oulu, Finland


We have developed a method that utilizes repeated sequences of pseudorandomly modulated stimuli for calculation of the SNR either in the time or frequency domains. The method has the advantage that the distribution of SNR over relevant frequencies is readily observed. In addition, a SNR value, calculated as the ratio of the corresponding variances, is an estimate of the true SNR because it has been weighted by the cell's frequency response. The procedure offers significant advantages when studying signal transmission in nonspiking cells like photoreceptors.

Short Communications
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Baylor, D.A., Lamb, T.D. & Yau, K.-W. (1979). Responses of retinal rods to single photons. Journal of Physiology (London) 288, 613634.Google ScholarPubMed
Bendat, J.S. & Piersol, A.G. (1971). Random Data: Analysis and Measurement Procedures. New York: Wiley.Google Scholar
Dodge, F.A., Knight, B.W. & Toyoda, J.-I. (1968). Voltage noise in Limulus visual cells. Science 160, 88–88.CrossRefGoogle ScholarPubMed
French, A.S. (1980 a). Coherence improvement in white noise analysis by the use of a repeated random sequence generator. IEEE Transactions in Biomedical Engineering 27, 5153.CrossRefGoogle ScholarPubMed
French, A.S. (1980 b). Phototransduction in the fly compound eye exhibits temporal resonances and a pure time delay. Nature 283, 200202.CrossRefGoogle Scholar
Fuortes, M.G.F. & Yeandle, S. (1964). Probability of occurrence of discrete potential waves in the eye of Limulus. Journal of General Physiology 47, 443463.CrossRefGoogle ScholarPubMed
Grzywacz, N.M., Hillman, P. & Knight, B.W. (1988). The quantal source of area supralinearity of flash responses in Limulus photoreceptors. Journal of General Physiology 91, 659684.CrossRefGoogle ScholarPubMed
Grzywacz, N.M., Hillman, P. & Knight, B.W. (1992). The amplitudes of unit events in Limulus photoreceptors are modulated from an input that resembles the overall response. Biological Cybernetics 66, 659684.CrossRefGoogle ScholarPubMed
Hardie, R.C. (1979). Electrophysiological analysis of fly retina. I. Comparative properties of R1–6 and R7 and R8. Journal of Comparative Physiology 167, 723736.Google Scholar
Harris, F.J. (1978). On the use of the windows for harmonic analysis with the discrete Fourier transform. Proceedings of IEEE 66, 5184.CrossRefGoogle Scholar
Howard, J., Blakeslee, B. & Laughlin, S.B. (1987). The intracellular pupil mechanism and photoreceptor signal to noise ratios in the blowfly Lucilia cuprina. Proceedings of the Royal Society B (London) 231, 415435.CrossRefGoogle Scholar
Järvilehto, M. (1979). Receptor potentials in invertebrate visual cells. In Handbook of Sensory Physiology, Vol. 7/6A, ed. Autrum, H., pp. 315356. Berlin: Springer Verlag.Google Scholar
Järvilehto, M. & Zettler, F. (1971). Localized intracellular potentials from pre- and post-synaptic components in the external plexiform layer of an insect retina. Zeitschrift für Vergleichende Physiologie 75, 422440.CrossRefGoogle Scholar
Juusola, M. & Weckström, M. (1993). Band-pass filtering by voltage-dependent membrane in insect photoreceptors. Neuroscience Letters 154, 8488.CrossRefGoogle Scholar
Juusola, M. (1993). Linear and nonlinear contrast coding in light adapted blowfly photoreceptors. Journal of Comparative Physiology 172, 511521.CrossRefGoogle Scholar
Lamb, T.D. (1984). Electrical response of photoreceptors. In Recent Advances in Physiology, ed. Baker, P.F., pp. 2965. Edinburgh, London, Melbourne, New York: Churchill Livingstone.Google Scholar
Laughlin, S.B. (1981). Neural principles in the peripheral visual system of invertebrates. In Handbook of Sensory Physiology, Vol. 7/6B, ed. Autrum, H., pp. 133280. Berlin: Springer-Verlag.Google Scholar
Laughlin, S.B., Howard, J. & Blakeslee, B. (1987). Synaptic limitations to contrast coding in the retina of the blowfly Calliphora. Proceedings of the Royal Society B (London) 231, 437467.CrossRefGoogle ScholarPubMed
Laughlin, S.B. (1989). The role of sensory adaptation in the retina. Journal of Experimental Biology 146, 3962.Google ScholarPubMed
Leutscher-Hazelhoff, J. (1975). Linear and non-linear performance of transducer and pupil in Calliphora retinula cells. Journal of Physiology (London) 246, 333350.CrossRefGoogle ScholarPubMed
Lillywhite, P.G. (1977). Single photon signals and transduction in an insect eye. Journal of Comparative Physiology 122, 189200.CrossRefGoogle Scholar
Lillywhite, P.G. & Laughlin, S.B. (1979). Transducer noise in a photoreceptor. Nature 227, 569572.CrossRefGoogle Scholar
Weckström, M., Kouvalainen, E. & Järvilehto, M. (1988). Nonlinearities in response properties of insect visual cells: An analysis in time and frequency domain. Acta Physiologica Scandinavica 132, 103113.CrossRefGoogle Scholar
Weckström, M., Hardie, R.C. & Laughlin, S.B. (1991). Voltageactivated potassium channels in blowfly photoreceptors and their role in light adaptation. Journal of Physiology (London) 440, 635657.CrossRefGoogle ScholarPubMed
Weckström, M., Kouvalainen, E. & Juusola, M. (1992). Measurement of cell impedance in frequency domain using discontinuous current clamp and white-noise-modulated current injection. Pfluegers Archieve 421, 469472.CrossRefGoogle ScholarPubMed
Wong, F., Knight, B.W. & Dodge, F.A. (1982). Adapting bump model for photoreceptors of Limulus. Journal of General Physiology 79, 10891113.CrossRefGoogle ScholarPubMed
Zettler, F. (1969). Die Abhängigkeit des Übertragungsverhaltens von Frenquenz und Adaptationszustand; gemessen am einzelnen Lichtrezeptor von Calliphora erythrocephala. Zeitschrift für Vergleichende Physiologie 64, 432449.CrossRefGoogle Scholar