Skip to main content Accessibility help
×
Home
Hostname: page-component-78bd46657c-lkdxh Total loading time: 0.171 Render date: 2021-05-07T11:19:30.967Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Differential expression of glycine receptor subunits in the retina of the rat: A study using immunohistochemistry and in situ hybridization

Published online by Cambridge University Press:  02 June 2009

U. Greferath
Affiliation:
Neuroanatomische Abteilung, Max-Planck-Institut für Hirnforschung, Deutschordenstrasse 46, D-60528 Frankfurt, Germany
J. H. Brandstätter
Affiliation:
Neuroanatomische Abteilung, Max-Planck-Institut für Hirnforschung, Deutschordenstrasse 46, D-60528 Frankfurt, Germany
H. Wässle
Affiliation:
Neuroanatomische Abteilung, Max-Planck-Institut für Hirnforschung, Deutschordenstrasse 46, D-60528 Frankfurt, Germany
J. Kirsch
Affiliation:
Neuroanatomische Abteilung, Max-Planck-Institut für Hirnforschung, Deutschordenstrasse 46, D-60528 Frankfurt, Germany
J. Kuhse
Affiliation:
Neurochemische Abteilung, Max-Planck-Institut für Hirnforschung, Deutschordenstrasse 46, D-60528 Frankfurt, Germany
U. Grünert
Affiliation:
Neuroanatomische Abteilung, Max-Planck-Institut für Hirnforschung, Deutschordenstrasse 46, D-60528 Frankfurt, Germany

Abstract

Immunohistochemistry and in situ hybridization were used to study the distribution of glycine receptor (GlyR) subunits and the GlyR-associated protein gephyrin in the rat retina. Monoclonal antibodies against the α and β subunits of the GlyR and gephyrin showed a strong punctate labeling pattern in the inner plexiform layer. Glycine receptor mRNAs were found in the inner nuclear layer and the ganglion cell layer. The α 1 subunit mRNA is predominantly present in the outer half of the INL and on some but not all ganglion cells. GlyR α2 subunit mRNA is predominantly present in the inner half of the INL and on nearly all cells in the ganglion cell layer. GlyR α3–, GlyR β-, and gephyrin-mRNAs are present in the entire INL and in cells in the ganglion cell layer. The differential expression of glycine receptor subunits indicates a functional diversity of glycine receptors in the retina.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below.

References

Altschuler, R.A., Betz, H., Parakkal, M.H., Reeks, K.A. & Wenthold, R.J. (1986). Identification of glycinergic synapses in the cochlear nucleus through immunocytochemical localization of the postsynaptic receptor. Brain Research 369, 316320.CrossRefGoogle ScholarPubMed
Becker, C.-M., Hoch, W. & Betz, H. (1988). Glycine receptor heterogeneity in rat spinal cord during postnatal development. EMBO Journal 7, 37173726.Google ScholarPubMed
Bolz, J., Thier, P., Voigt, T. & Wässle, H. (1985). Action and localization of glycine and taurine in the cat retina. Journal of Physiology 362, 395413.CrossRefGoogle ScholarPubMed
Boos, R., Schneider, H. & Wässle, H. (1993). Voltage- and transmittergated currents of Aii-Amacrine cells in a slice preparation of the rat retina. Journal of Neuroscience 13, 28742888.CrossRefGoogle Scholar
Bormann, J., Hamill, O.P. & Sakmann, B. (1987). Mechanism of anion permeation through channels gated by glycine and γ-aminobutyric acid in mouse cultured spinal neurones. Journal of Physiology 385, 243286.CrossRefGoogle ScholarPubMed
Bormann, J., Rundström, N., Betz, H. & Langosch, D. (1993). Residues within transmembrane segment M2 determine chloride conductance of glycine receptor homo- and hetero-oligomers. EMBO Journal 12, 37293737.Google ScholarPubMed
Clayton, D.F. & Alvarez-Buylla, A. (1989). In situ hybridization using PEG-embedded tissue and riboprobes: Increased cellular detail coupled with high sensitivity. Journal of Histochemistry and Cytochemistry 37, 389393.CrossRefGoogle ScholarPubMed
Feigenspan, A., Wässle, H. & Bormann, J. (1993). Pharmacology of GABA receptor Cl channels in rat retinal bipolar cells. Nature 361, 159162.CrossRefGoogle ScholarPubMed
Frederick, J.M., Rayborn, M.E. & Hollyfield, J.G. (1984). Glycinergic neurons in the human retina. Journal of Comparative Neurology 227, 159172.CrossRefGoogle ScholarPubMed
Greferath, U., Müller, F., Wässle, H., Shivers, B. & Seeburg, P. (1993). Localization of GABAA receptors in the rat retina. Visual Neuroscience 10, 551561.CrossRefGoogle ScholarPubMed
Grenningloh, G., Pribilla, I., Prior, P., Multhaup, G., Beyreuther, K., Taleb, O. & Betz, H. (1990 a). Cloning and expression of the 58 kD β subunit of the inhibitory glycine receptor. Neuron 4, 963970.CrossRefGoogle ScholarPubMed
Grenningloh, G., Schmieden, V., Schofield, P.R., Seeburg, P.H., Siddique, T., Mohandas, T.K., Becker, C.-M. & Betz, H. (1990 b). Alpha subunit variants of the human glycine receptor: Primary structures, functional expression and chromosomal localization of the corresponding gene. EMBO Journal 9, 771776.Google Scholar
Grünert, U. & Wässle, H. (1993). Immunocytochemical localization of glycine receptors in the mammalian retina. Journal of Comparative Neurology 335, 523537.CrossRefGoogle ScholarPubMed
Hendrickson, A.E., Koontz, M.A., Pourcho, R.G., Sarthy, P.V. & Goebel, D.J. (1988). Localization of glycine-containing neurons in the Macaca monkey retina. Journal of Comparative Neurology 273, 473487.CrossRefGoogle ScholarPubMed
Hoch, W., Betz, H. & Becker, C.-M. (1989). Primary cultures of mouse spinal cord express the neonatal isoform of the inhibitory glycine receptor. Neuron 3, 339348.CrossRefGoogle ScholarPubMed
Jäger, J. & Wässle, H. (1987). Localization of glycine uptake and receptors in the cat retina. Neuroscience Letters 75, 147151.CrossRefGoogle ScholarPubMed
Jensen, R.J. (1991). Involvement of glycinergic neurons in the diminished surround activity of ganglion cells in the dark-adapted rabbit retina. Visual Neuroscience 6, 4353.CrossRefGoogle ScholarPubMed
Karschtn, A. & Wässle, H. (1990). Voltage- and transmitter-gated currents in isolated rod bipolar cells of the rat retina. Journal of Neurophysiology 63, 860876.CrossRefGoogle Scholar
Kirsch, J. & Betz, H. (1993). Widespread expression of gephyrin, a putative glycine receptor-tubulin linker protein, in rat brain. Brain Research 621, 301310.CrossRefGoogle ScholarPubMed
Kirsch, J., Langosch, D., Prior, P., Littauer, U.Z., Schmitt, B. & Betz, H. (1991). The 93–kDa glycine receptor-associated proteins binds to tubulin. Journal of Biological Chemistry 266, 2224222245.Google ScholarPubMed
Kirsch, J., Malosio, M.-L., Wolters, I. & Betz, H. (1993). Distribution of gephyrin transcripts in the adult and developing rat brain. European Journal of Neuroscience 5, 11091117.CrossRefGoogle ScholarPubMed
Kuhse, J., Schmieden, V. & Betz, H. (1990 a). A single amino acid exchange alters the pharmacology of neonatal rat glycine receptor subunit. Neuron 5, 867873.CrossRefGoogle ScholarPubMed
Kuhse, J., Schmieden, V. & Betz, H. (1990 b). Identification and functional expression of a novel ligand binding subunit of the inhibitory glycine receptor. Journal of Biological Chemistry 265, 2231722320.Google ScholarPubMed
Langosch, D., Thomas, L. & Betz, H. (1988). Conserved quaternary structure of ligand-gated ion channels: The postsynaptic glycine receptor is a pentamer. Proceeding of the National Academy of Sciences of the U.S.A. 85, 73947398.CrossRefGoogle ScholarPubMed
Langosch, D., Becker, C.-M. & Betz, H. (1990). The inhibitory glycine receptor: A ligand-gated chloride channel of the central nervous system. European Journal of Biochemistry 194, 18.CrossRefGoogle ScholarPubMed
Malosio, M.-L., Marquèze-Pouey, B., Kuhse, J. & Betz, H. (1991). Widespread expression of glycine receptor subunit mRNAs in the adult and developing rat brain. EMBO Journal 10, 24012409.Google ScholarPubMed
Marc, R.E. (1989). The role of glycine in the mammalian retina. Progress in Retinal Research 8, 67107.CrossRefGoogle Scholar
Marc, R.E. & Liu, W.-L. S. (1985). (3H)Glycine-accumulating neurons of the human retina. Journal of Comparative Neurology 232, 241260.CrossRefGoogle ScholarPubMed
Pfeiffer, F., Simler, R., Grenningloh, G. & Betz, H. (1984). Monoclonal antibodies and peptide mapping reveal structural similarities between the subunits of the glycine receptor of rat spinal cord. Proceedings of the National Academy of Sciences of the U.S.A. 81, 72247227.CrossRefGoogle ScholarPubMed
Pourcho, R.G. & Goebel, D.J. (1985). A combined Golgi and auto radiographic study of (3H)Glycine-accumulating amacrine cells in the cat retina. Journal of Comparative Neurology 233, 473480.CrossRefGoogle Scholar
Pourcho, R.G. & Goebel, D.J. (1987 a). A combined Golgi and auto radiographic study of (3H)glycine-accumulating cone bipolar cells in the cat retina. Journal of Neuroscience 7, 11781188.CrossRefGoogle Scholar
Pourcho, R.G. & Goebel, D.J. (1987 b). Visualization of endogenous glycine in cat retina: An immunocytochemical study with Fab fragments. Journal of Neuroscience 7, 11891197.CrossRefGoogle ScholarPubMed
Pourcho, R.G. & Owczarzak, M.T. (1991 a). Connectivity of glycine immunoreactive amacrine cells in the cat retina. Journal of Comparative Neurology 307, 549561.CrossRefGoogle ScholarPubMed
Pourcho, R.G. & Owczarzak, M.T. (1991 b). Glycine receptor immunoreactivity is localized at amacrine synapses in cat retina. Journal of Comparative Neurology 7, 611618.Google ScholarPubMed
Sassoè-Pognetto, M., Wässle, H. & Grünert, U. (1994). Glycinergic synapses in the rod pathway of the rat retina: Cone bipolar cells express the α1 subunit of the glycine receptor. Journal of Neuroscience (in press).CrossRefGoogle Scholar
Schmieden, V., Grenningloh, G., Schofield, P.R. & Betz, H. (1989). Functional expression in Xenopus oocytes of the strychnine binding 48 kD subunit of the glycine receptor. EMBO Journal 8, 695700.Google ScholarPubMed
Schmitt, B., Knaus, P., Becker, C.-M. & Betz, H. (1987). The Mr 93000 polypeptide of the postsynaptic glycine receptor complex is a peripheral membrane protein. Biochemistry 26, 805811.CrossRefGoogle ScholarPubMed
Schröder, S., Hoch, W., Becker, C.-M., Grenningloh, G. & Betz, H. (1991). Mapping of antigenic epitopes on the α 1 subunit of the inhibitory glycine receptor. Biochemistry 30, 4247.Google ScholarPubMed
Suzuki, S., Tachibana, M. & Kaneko, A. (1990). Effects of glycine and GABA on isolated bipolar cells of the mouse retina. Journal of Physiology 421, 645662.CrossRefGoogle ScholarPubMed
Tauck, D.L., Frosch, M.P. & Lipton, S.A. (1988). Characterization of GABA- and glycine-induced currents of solitary rodent retinal ganglion cells in culture. Neuroscience 27, 193203.CrossRefGoogle ScholarPubMed
Triller, A., Cluzeaud, F., Pfeiffer, F., Betz, H. & Korn, H. (1985). Distribution of glycine receptors at central synapses: An immunoselectron microscopy study. Journal of Cell Biology 101, 683688.CrossRefGoogle ScholarPubMed
Triller, A., Cluzeaud, F. & Korn, H. (1987). Gamma-aminobutyric acid-containing terminals can be apposed to glycine receptors at central synapses. Journal of Cell Biology 104, 947956.CrossRefGoogle ScholarPubMed
Wässle, H., Schäfer-Trenkler, I. & Voigt, T. (1986). Analysis of a glycinergic inhibitory pathway in the cat retina. Journal of Neuroscience 6, 594604.CrossRefGoogle ScholarPubMed
Wisden, W., Morris, B.J. & Hunt, S.P. (1991). In situ hybridization with synthetic DNA probes. In Molecular Neurobiology—A Practical Approach, ed. Chad, J. & Wheal, H., pp. 205225. Oxford: IRL Press/Oxford University Press.Google Scholar
Yazulla, S. & Studholme, K. (1991 a). Glycinergic interplexiform cells make synaptic contact with amacrine cell bodies in goldfish retina. Journal of Comparative Neurology 310, 110.CrossRefGoogle ScholarPubMed
Yazulla, S. & Studholme, K.M. (1991 b). Glycine-receptor immunoreactivity in retinal bipolar cells is postsynaptic to glycinergic and GABAergic amacrine cell synapses. Journal of Comparative Neurology 310, 1120.CrossRefGoogle ScholarPubMed
Zarbin, M.A., Wamsley, J.K. & Kuhar, M.J. (1981). Glycine receptor: Light microscopic autoradiographic localization with [3H]strychnine. Journal of Neuroscience 1, 532547.CrossRefGoogle Scholar
Zucker, C.L. & Ehinger, B. (1992). Heterogeneity of receptor immunoreactivity at synapses of glycine-utilizing neurons. Proceedings of the Royal Society B (London) 249, 8994.CrossRefGoogle ScholarPubMed

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Differential expression of glycine receptor subunits in the retina of the rat: A study using immunohistochemistry and in situ hybridization
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Differential expression of glycine receptor subunits in the retina of the rat: A study using immunohistochemistry and in situ hybridization
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Differential expression of glycine receptor subunits in the retina of the rat: A study using immunohistochemistry and in situ hybridization
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *