Skip to main content Accessibility help
×
Home
Hostname: page-component-5959bf8d4d-2zkqf Total loading time: 0.447 Render date: 2022-12-08T04:14:01.982Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Cortical afferents of visual area MT in the Cebus monkey: Possible homologies between New and old World monkeys

Published online by Cambridge University Press:  02 June 2009

Marcello G. P. Rosa
Affiliation:
Departamento de Neurobiologia, Instituto de Biofísica Carlos Chagas Filho, CCS, Bloco G, IIha do Fundão, Rio de Janeiro 21941, Brazil Vision, Touch, and Hearing Research Centre, Department of Physiology and Pharmacology, University of Queensland QLD 4072, Australia
Juliana G. M. Soares
Affiliation:
Departamento de Neurobiologia, Instituto de Biofísica Carlos Chagas Filho, CCS, Bloco G, IIha do Fundão, Rio de Janeiro 21941, Brazil
Mario Fiorani Jr
Affiliation:
Departamento de Neurobiologia, Instituto de Biofísica Carlos Chagas Filho, CCS, Bloco G, IIha do Fundão, Rio de Janeiro 21941, Brazil
Ricardo Gattass
Affiliation:
Departamento de Neurobiologia, Instituto de Biofísica Carlos Chagas Filho, CCS, Bloco G, IIha do Fundão, Rio de Janeiro 21941, Brazil

Abstract

Cortical projections to the middle temporal (MT) visual area were studied by injecting the retrogradely transported fluorescent tracer Fast Blue into MT in adult New World monkeys (Cebus apella). Injection sites were selected based on electrophysiological recordings, and covered eccentricities from 2–70 deg, in both the upper and lower visual fields. The position and laminar distribution of labeled cell bodies were correlated with myeloarchitectonic boundaries and displayed in flat reconstructions of the neocortex. Topographically organized projections were found to arise mainly from the primary, second, third, and fourth visual areas (V1, V2, V3, and V4). Coarsely topographic patterns were observed in transitional V4 (V4t), in the parieto-occipital and parieto-occipital medial areas (PO and POm), and in the temporal ventral posterior area (TVP). In addition, widespread or nontopographic label was found in visual areas of the superior temporal sulcus (medial superior temporal, MST, and fundus of superior temporal, FST), annectent gyrus (dorsointermediate area, DI; and dorsomedial area, DM), intraparietal sulcus (lateral intraparietal, LIP; posterior intraparietal, PIP; and ventral intraparietal, VIP), and in the frontal eye field (FEF). Label in PO, POm, and PIP was found only after injections in the representation of the peripheral visual field (>10 deg), and label in V4 and FST was more extensive after injections in the central representation. The projections from V1 and V2 originated predominantly from neurons in supragranular layers, whereas those from V3, V4t, DM, DI, POm, and FEF consisted of intermixed patches with either supragranular or infragranular predominance. All of the other projections were predominantly infragranular. Invasion of area MST by the injection site led to the labeling of further pathways, including substantial projections from the dorsal prelunate area (DP) and from an ensemble of areas located along the medial wall of the hemisphere. In addition, weaker projections were observed from the parieto-occipital dorsal area (POd), area 7a, area prostriata, the posterior bank of the arcuate sulcus, and areas in the anterior part of the lateral sulcus. Despite the different nomenclatures and areal boundaries recognized by different models of simian cortical organization, the pattern of projections to area MT is remarkably similar among primates. Our results provide evidence for the existence of many homologous areas in the extrastriate visual cortex of New and Old World monkeys.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allman, J.M. & Kaas, J.H. (1971). A representation of the visual field in the caudal third of the middle temporal gyrus of owl monkeys (Aotus trivirgatus). Brain Research 31, 85–105.CrossRefGoogle Scholar
Allman, J.M. & Kaas, J.H. (1974). A crescent-shaped cortical visual area surrounding the middle temporal area (MT) in the owl monkey (Aotus trivirgatus). Brain Research 81, 199–213.CrossRefGoogle Scholar
Allman, J.M. & Kaas, J.H. (1975). The dorsomedial cortical visual area: A third tier area in the occipital lobe of the owl monkey. (Aotus trivirgatus). Brain Research 100, 473–487.CrossRefGoogle Scholar
Allman, J.M. & Kaas, J.H. (1976). Representation of the visual field in the medial wall of the occipital-parietal cortex in the owl monkey. Science 191, 572–576.CrossRefGoogle ScholarPubMed
Allman, J.M., Kaas, J.H. & Lane, R.H. (1973). The middle temporal visual area (MT) in the bushbaby (Galago senegalensis). Brain Research 57, 197–202.CrossRefGoogle Scholar
Andersen, R.A., Asanuma, C., Essick, G. & Siegel, R.M. (1990). Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule. Journal of Comparative Neurology 296, 65–113.CrossRefGoogle ScholarPubMed
Andersen, R.A. & Gnadt, J.W. (1989). Role of posterior parietal cortex in saccadic eye movements. In Reviews in Oculomotor Research, Vol. 3, ed. Wurtz, R. & Goldberg, M., pp. 315335. Amsterdam: Elsevier.Google Scholar
Baker, J.F., Petersen, S.E., Newsome, W.T. & Allman, J.M. (1981). Visual response properties of neurons in four extrastriate visual areas of the owl monkey (Aotus trivirgatus): A quantitative comparison of medial, dorsomedial, dorsolateral, and middle temporal areas. Journal of Neurophysiology 45, 397–416.CrossRefGoogle ScholarPubMed
Baylis, G.C., Rolls, E.T. & Leonard, C.M. (1987). Functional subdivisions of temporal lobe neocortex. Journal of Neuroscience 7, 330–342.CrossRefGoogle ScholarPubMed
Blatt, G.J., Andersen, R.A. & Stoner, G.R. (1990). Visual receptive-field organization and cortico-cortical connections of the lateral intraparietal area (Area LIP) in the macaque. Journal of Comparative Neurology 299, 421–445.CrossRefGoogle ScholarPubMed
Bon, L. & Lucchetti, C. (1990). Neurons signalling the maintenance of attentive fixation in frontal area 6aβ of macaque monkey. Experimental Brain Research 82, 231–233.CrossRefGoogle Scholar
Boussaoud, D., Desimone, R. & Ungerleider, L.G. (1991). Visual topography of area TEO in the macaque. Journal of Comparative Neurology 306, 554–575.CrossRefGoogle ScholarPubMed
Boussaoud, D., Ungerleider, L.G. & Desimone, R. (1990). Pathways for motion analysis: Cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque. Journal of Comparative Neurology 296, 462–495.CrossRefGoogle ScholarPubMed
Bruce, C.J., Desimone, R. & Gross, C.G. (1981). Properties of neurons in a visual polysensory area in the superior temporal sulcus of the macaque. Journal of Neurophysiology 46, 369–384.CrossRefGoogle Scholar
Bruce, C.J., Goldberg, M.E., Bushnell, M.C. & Stanton, G.B. (1985). Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. Journal of Neurophysiology 54, 714–734.CrossRefGoogle ScholarPubMed
Burkhalter, A., Felleman, D.J., Newsome, W.T. & Van Essen, D.C. (1986). Anatomical and physiological asymmetries related to visual areas V3 and VP in macaque extrastriate cortex. Vision Research 26, 63–80.CrossRefGoogle ScholarPubMed
Cavada, C. & Goldman-Rakic, P.S. (1989). Posterior parietal cortex in rhesus monkey. I: Parcelation of areas based on distinctive limbic and sensory cortico-cortical connections. Journal of Comparative Neurology 287, 393–421.CrossRefGoogle Scholar
Colby, C.L., Gattass, R., Olson, C.R. & Gross, C.G. (1988). Topographical organization of cortical afferents to extrastriate area PO in the macaque: A dual tracer study. Journal of Comparative Neurology 269, 392–413.CrossRefGoogle ScholarPubMed
Colby, C.L., Duhamel, J.N. & Goldberg, M.E. (1993). The ventral intraparietal area (VIP) of the macaque: Anatomical location and visual response properties. Journal of Neurophysiology 69, 902–914.CrossRefGoogle Scholar
Conde, F. (1987). Further studies on the use of the fluorescent tracers Fast blue and Diamidino yellow: Effective uptake area and cellular storage sites. Journal of Neuroscience Methods 21, 31–43.CrossRefGoogle ScholarPubMed
Cusick, C.G. & Kaas, J.H. (1988). Cortical connections of area 18 and dorsolateral visual cortex in squirrel monkeys. Visual Neuroscience 1, 211–237.CrossRefGoogle ScholarPubMed
Desimone, R., Fleming, J. & Gross, C.G. (1980). Prestriate afferents to inferior temporal cortex: An HRP study. Brain Research 184, 41–55.CrossRefGoogle Scholar
Desimone, R. & Schein, S.J. (1987). Visual properties of neurons in area V4 of the macaque: Sensitivity to stimulus form. Journal of Neurophysiology 57, 835–867.CrossRefGoogle ScholarPubMed
Desimone, R. & Ungerleider, L.G. (1986). Multiple visual areas in the caudal superior temporal sulcus of the macaque. Journal of Comparative Neurology 248, 164–189.CrossRefGoogle ScholarPubMed
De Yoe, E.A., Hockfield, S., Garren, H. & Van Essen, D.C. (1990). Antibody labeling of functional subdivisions in visual cortex: Cat-301 immunoreactivity in striate and extrastriate cortex of the macaque monkey. Visual Neuroscience 5, 67–81.CrossRefGoogle Scholar
De Yoe, E.A. & Van Essen, D.C. (1985). Segregation of efferent connections and receptive-field properties in visual area V2 of the macaque. Nature 317, 58–61.CrossRefGoogle Scholar
Dichgans, J. & Brandt, T.H. (1974). The psychophysics of visually induced perception of self-motion and tilt. In The Neurosciences- Third Study Program, Vol. III, ed. Schmitt, F.O. & Worden, F.G., pp. 123129. Cambridge: MIT Press.Google Scholar
Duffy, C.J. & Wurtz, R.H. (1991). Sensitivity of MST neurons to optic flow stimuli: I. A continuum of response selectivity to large-field stimuli. Journal of Neurophysiology 65, 1329–1345.CrossRefGoogle ScholarPubMed
Felleman, D.J. & Kaas, J.H. (1984). Receptive-field properties of neurons in the middle temporal visual area (MT) of owl monkeys. Journal of Neurophysiology 52, 488–513.CrossRefGoogle ScholarPubMed
Felleman, D.J. & Van Essen, D.C. (1991). Distributed hierarchical processing in primate cerebral cortex. Cerebral Cortex 1, 1–47.CrossRefGoogle ScholarPubMed
Fiorani, M. Jr., Gattass, R., Rosa, M.G.P. & Sousa, A.P.B. (1989). Visual area MT in the Cebus monkey: Location, visuotopic organization, and variability. Journal of Comparative Neurology 287, 98–118.CrossRefGoogle ScholarPubMed
Fleagle, J.G. (1988). Primate Adaptation and Evolution. San Diego, California: Academic Press.Google Scholar
Gallyas, F. (1979). Silver staining of myelin by means of physical development. Neurology Research 1, 203–209.CrossRefGoogle ScholarPubMed
Gattass, R. & Gross, C.G. (1981). Visual topography of the striate projection zone in the posterior superior temporal sulcus (MT) of the macaque. Journal of Neurophysiology 46, 521–538.CrossRefGoogle ScholarPubMed
Gattass, R., Rosa, M.G.P., Sousa, A.P.B., Piñon, M.C, Fiorani, M. Jr., & Neuenschwander, S. (1990). Cortical streams of visual information processing in primates. Brazilian Journal of Medical and Biological Research 23, 375–393.Google ScholarPubMed
Gattass, R., Sousa, A.P.B. & Covey, E. (1985). Cortical visual areas of the macaque: Possible substrates for pattern recognition mechanisms. In Pattern Recognition Mechanisms, ed. Chagas, C, Gattass, R. & Gross, C.G., pp. 120. Vatican City: Pontificial Academy of Sciences.Google Scholar
Gattass, R., Sousa, A.P.B. & Rosa, M.G.P. (1987). Visual topography of V1 in the Cebus monkey. Journal of Comparative Neurology 259, 529–548.CrossRefGoogle ScholarPubMed
Gattass, R., Sousa, A.P.B. & Gross, C.G. (1988 a). Visuotopic organization and extent of V3 and V4 of the macaque. Journal of Neuroscience 8, 1831–1845.CrossRefGoogle ScholarPubMed
Gattass, R., Sousa, A.P.B., Rosa, M.G.P. & Pinñon, M.C. (1988 b). Ventral V3 in the Cebus monkey: Visual topography and projections to V1. Society for Neuroscience Abstracts 14, 202.Google Scholar
Hockfield, S., McKay, R.D.G., Hendry, S.H.C. & Jones, E.G. (1983). A surface antigen that identifies ocular-dominance columns in the visual cortex and laminar features of the lateral geniculate nucleus. Cold Spring Harbor Symposium on Quantitative Biology 48, 877–889.CrossRefGoogle ScholarPubMed
Huerta, M.F. & Kaas, J.H. (1990). Supplementary eye field as defined by intracortical microstimulation: Connections in macaques. Journal of Comparative Neurology 293, 299–330.CrossRefGoogle ScholarPubMed
Hutchins, K.D., Martino, A.M. & Strick, P.L. (1988). Corticospinal projections from the medial wall of the hemisphere. Experimental Brain Research 71, 667–672.CrossRefGoogle ScholarPubMed
Kaas, J.H. & Krubitzer, L.A. (1991). The organization of extrastriate visual cortex. In Neuroanatomy of the Visual Pathways and Their Development, ed. Dreher, B. & Robinson, S.R., pp. 302323. London: Macmillan.Google Scholar
Kaas, J.H. & Morel, A. (1993). Connections of visual areas of the upper temporal lobe of owl monkeys: The MT crescent and dorsal and ventral subdivisions of FST. Journal of Neuroscience 13, 534–546.CrossRefGoogle Scholar
Krubitzer, L.A. & Kaas, J.H. (1990). Cortical connections of MT in four species of primates: Areal, modular, and retinotopic patterns. Visual Neuroscience 5, 165–204.CrossRefGoogle ScholarPubMed
Kuypers, H.G.J.M., Szwarcbart, M.K., Mishkin, M. & Rosvold, H.E. (1965). Occipitotemporal corticocortical connections in the rhesus monkey. Experimental Neurology 11, 245–262.CrossRefGoogle ScholarPubMed
Gros, Clark W.E.Le (1959). The Antecedents of Man. Edinburgh: University Press.Google Scholar
Lennie, P., Krauskopf, J. & Sclar, G. (1990). Chromatic mechanisms in striate cortex of macaque. Journal of Neuroscience 10, 649–669.CrossRefGoogle ScholarPubMed
Lin, C.S., Weller, R.E. & Kaas, J.H. (1982). Cortical connections of striate cortex in owl monkeys. Journal of Comparative Neurology 211, 165–176.CrossRefGoogle Scholar
Lund, J.S., Lund, R.D., Hendrickson, A.E., Bunt, A.H. & Fuchs, A.F. (1975). The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase. Journal of Comparative Neurology 164, 287–304.CrossRefGoogle ScholarPubMed
Maunsell, J.H.R. & Van Essen, D.C. (1983 a). Functional properties of neurons in the middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. Journal of Neurophysiology 49, 1127–1147.CrossRefGoogle ScholarPubMed
Maunsell, J.H.R. & Van Essen, D.C. (1983 b). The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. Journal of Neuroscience 3, 2563–2586.CrossRefGoogle ScholarPubMed
Maunsell, J.H.R. & Van Essen, D.C. (1987). Topographic organization of the middle temporal visual area in the macaque monkey: Representational biases and the relationship to callosal connections and myeloarchitectonic boundaries. Journal of Comparative Neurology 266, 535–555.CrossRefGoogle ScholarPubMed
Morel, A. & Bullier, J. (1990). Anatomical segregation of two cortical visual pathways in the macaque monkey. Visual Neuroscience 4, 555–578.CrossRefGoogle ScholarPubMed
Neuenschwander, S. (1989). Área visual parieto-occipital do Cebus apella: Um estudo anatômico e eletrofisiológico. MSc. Thesis, Rio de Janeiro, Universidade Federal do Rio de Janeiro.Google Scholar
Newsome, W.T. & Allman, J.M. (1980). Interhemispheric connections of visual cortex in the owl monkey Aotus trivirgatus and the bush-baby Galago senegalensis. Journal of Comparative Neurology 194, 209–233.CrossRefGoogle Scholar
Newsome, W.T., Maunsell, J.H.R. & Van Essen, D.C. (1986). Ventral posterior visual area of the macaque: Visual topography and areal boundaries. Journal of Comparative Neurology 252, 139–153.CrossRefGoogle ScholarPubMed
Olson, C.R., Musil, S.Y. & Goldberg, M.E. (1992). Posterior cingulate cortex and visuospatial cognition: Properties of neurons in the behaving monkey. In The Neurobiology of Cingulate Cortex and Limbic Thalamus, ed. Vogt, B.A. & Gabriel, M.Boston: Birkhauser (in press).Google Scholar
Perkel, D.J., Bullier, J. & Kennedy, H. (1986). Topography of the afferent connectivity of area 17 in the macaque monkey: A double-labelling study. Journal of Comparative Neurology 253, 374–402.CrossRefGoogle ScholarPubMed
Pessoa, V.F., Abrahão, J.C.H., Pacheco, R.A., Pereira, L.C.M., Magalhães-Castro, B. & Saraiva, P.E.S. (1992). Relative sizes of cortical visual areas in marmosets: Functional and phylogenetic implications. Experimental Brain Research 88, 459–462.CrossRefGoogle ScholarPubMed
Preuss, T.M. & Goldman-Rakic, P.S. (1991). Architectonics of the parietal and temporal association cortex in the strepsirhine primate Galago compared to the anthropoid primate Macaco. Journal of Comparative Neurology 310, 475–506.CrossRefGoogle Scholar
Previc, F.H. (1990). Functional specialization in the upper and lower visual fields in man: Origins and implications. Behavioral and Brain Sciences 13, 519–575.CrossRefGoogle Scholar
Rockland, K.S. & Pandya, D.N. (1979). Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey. Brain Research 179, 3–20.CrossRefGoogle ScholarPubMed
Rosa, M.G.P., Sousa, A.P.B. & Gattass, R. (1988). Representation of the visual field in the second visual area in the Cebus monkey. Journal of Comparative Neurology 275, 326–345.CrossRefGoogle ScholarPubMed
Rosa, M.G.P., Gattass, R., Fiorani, M. Jr., & Soares, J.G.M. (1992). Laminar, columnar, and topographic aspects of ocular dominance in the primary visual cortex of Cebus monkeys. Experimental Brain Research 88, 249–264.CrossRefGoogle ScholarPubMed
Sanides, F. (1972). Representation in the cerebral cortex and its areal lamination patterns. In The Structure and Function of the Nervous Tissue, ed. Bourne, G.H., pp. 329453. New York: Academic Press.Google Scholar
Sereno, M.I. & Allman, J.M. (1990). Cortical visual areas in mammals. In Vision and Visual Dysfunction Vol. 4: The Neural Basis of Visual Function, ed. Leventhal, A.G., pp. 160172. London: Macmillan.Google Scholar
Sereno, M.I., McDonald, C.T. & Allman, J.M. (1987). Multiple visual areas between V2 and MT in the owl monkey. Society for Neuroscience Abstracts 13, 625.Google Scholar
Shipp, S. & Zeki, S.M. (1985). Segregation of pathways leading from area V2 to areas V4 and V5 of macaque monkey visual cortex. Nature 315, 322–324.CrossRefGoogle ScholarPubMed
Sousa, A.P.B., Piñon, M.C.G.P., Gattass, R. & Rosa, M.G.P. (1991). Topographic organization of cortical input to striate cortex in the Cebus monkey: A fluorescent tracer study. Journal of Comparative Neurology 308, 665–682.CrossRefGoogle ScholarPubMed
Spatz, W.B. (1977). Topographically organized reciprocal connections between areas 17 and MT (visual area of the superior temporal sul-cus) in the marmoset Callithix jacchus. Experimental Brain Research 27, 559–572.CrossRefGoogle Scholar
Spatz, W.B. & Tigges, J. (1972). Experimental-anatomical studies on the “middle temporal visual area” (MT) in primates. I. Efferent cortico-cortical connections in the marmoset Callithrix jacchus. Journal of Comparative Neurology 146, 451–464.CrossRefGoogle ScholarPubMed
Spatz, W.B., Tigges, J. & Tigges, M. (1970). Subcortical projections, cortical associations, and some intrinsic interlaminar connections of the striate cortex in the squirrel monkey (Saimiri). Journal of Comparative Neurology 140, 155–174.CrossRefGoogle Scholar
Steele, G.E., Cusick, C.G. & Weller, R.E. (1991). Cortical connections of the caudal subdivision of the dorsolateral area (V4) in monkeys. Journal of Comparative Neurology 306, 495–520.CrossRefGoogle Scholar
Tigges, J., Spatz, W.B. & Tigges, M. (1973). Reciprocal point-to-point connections between parastriate and striate cortex in the squirrel monkey. Journal of Comparative Neurology 148, 481–490.CrossRefGoogle ScholarPubMed
Tigges, J., Tigges, M., Anschel, S., Cross, N.A., Letbetter, W.D. & McBride, R.L. (1981). Areal and laminar distribution of neurons interconnecting the central visual cortical areas 17, 18, 19, and MT in squirrel monkey (Saimiri). Journal of Comparative Neurology 202, 539–560.CrossRefGoogle Scholar
Tootell, R.B.H., Silverman, M.S., De Valois, R.L. & Jacobs, G.H. (1983). Functional organization of the second visual area in primates. Science 220, 737–739.CrossRefGoogle ScholarPubMed
Tusa, R.J., Palmer, L.A. & Rosenquist, A.C. (1979). Retinotopic organization of areas 18 and 19 in the cat. Journal of Comparative Neurology 185, 657–678.CrossRefGoogle Scholar
Ungerleider, L.G. & Desimone, R. (1986 a). Projections to the superior temporal sulcus from the central and peripheral field representations of V1 and V2. Journal of Comparative Neurology 248, 147–163.CrossRefGoogle ScholarPubMed
Ungerleeder, L.G. & Desimone, R. (1986 b). Cortical connections of visual area MT in the macaque. Journal of Comparative Neurology 248, 190–222.CrossRefGoogle Scholar
Ungerleider, L.G., Desmone, R. & Moran, J. (1986). Asymmetry of central and peripheral inputs from area V4 into the temporal and parietal lobes of the macaque. Society for Neuroscience Abstracts 12, 1182.Google Scholar
Ungerleider, L.G. & Mishkin, M. (1979). The striate projection zone in the superior temporal sulcus of Macaca mulatto: Location and topographic organization. Journal of Comparative Neurology 188, 347–366.CrossRefGoogle Scholar
Ungerleider, L.G. & Mishkin, M. (1982). Two cortical visual systems. In Analysis of Visual Behavior, ed. Ingle, D.J., Goodale, M.A. & Masnfield, R.J.W., pp. 549586. Cambridge: MIT Press.Google Scholar
Van Essen, D.C. & Maunsell, J.H.R. (1980). Two-dimensional maps of the cerebral cortex. Journal of Comparative Neurology 191, 255–281.CrossRefGoogle ScholarPubMed
Van Essen, D.C, Maunsell, J.H.R. & Bixby, J.L. (1981). The middle temporal visual area in the macaque: Myeloarchitecture, connections, functional properties, and topographic organization. Journal of Comparative Neurology 199, 293–326.CrossRefGoogle ScholarPubMed
Van Essen, D.C, Newsome, W.T., Maunsell, J.H.R. & Bixby, J.L. (1986). The projections from striate cortex (V1) to areas V2 and V3 in the macaque monkey: Asymmetries, areal boundaries, and patchy connections. Journal of Comparative Neurology 244, 451–480.CrossRefGoogle ScholarPubMed
Van Essen, D.C. & Zeki, S.M. (1978). The topographic organization of rhesus monkey prestriate cortex. Journal of Physiology (London) 277, 193–226.CrossRefGoogle Scholar
Von Bonin, G. & Bailey, P. (1947). The Neocortex of Macaca mulatto. Urbana, Illinois: University of Illinois Press.Google Scholar
Wall, J.T., Symonds, L.L. & Kaas, J.H. (1982). Cortical and subcortical projections of the middle temporal area (MT) and adjacent cortex in galagos. Journal of Comparative Neurology 211, 193–214.CrossRefGoogle ScholarPubMed
Weller, R.E. & Kaas, J.H. (1985). Cortical projections of the dorso-lateral visual area in owl monkeys: The prestriate relay to inferior temporal cortex. Journal of Comparative Neurology 234, 35–59.CrossRefGoogle Scholar
Weller, R.E., Steele, G.E. & Cusick, C.G. (1991). Cortical connections of dorsal cortex rostral to VII in squirrel monkeys. Journal of Comparative Neurology 306, 521–537.CrossRefGoogle Scholar
Weller, R.E., Wall, J.T. & Kaas, J.H. (1984). Cortical connections of the middle temporal visual area (MT) and the superior temporal cortex in owl monkeys. Journal of Comparative Neurology 228, 81–104.CrossRefGoogle ScholarPubMed
Wong-Riley, M. (1978). Reciprocal connections between striate and prestriate in squirrel monkey as demonstrated by combined peroxi-dase histochemistry and autoradiography. Brain Research 147, 159–164.CrossRefGoogle Scholar
Zeki, S.M. (1971 a). Convergent input from striate cortex (area 17) to the cortex of the superior temporal sulcus in the rhesus monkey. Brain Research 28, 338340CrossRefGoogle ScholarPubMed
Zeki, S.M. (1971 b). Cortical projections from two prestriate areas in the monkey. Brain Research 34, 19–35.CrossRefGoogle ScholarPubMed
Zeki, S.M. (1974). Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey. Journal of Physiology (London) 236, 549–573.CrossRefGoogle ScholarPubMed
Zeki, S.M. (1978). The third visual complex of the rhesus monkey prestriate cortex. Journal of Physiology (London) 277, 245–272.CrossRefGoogle ScholarPubMed
Zeki, S.M. (1980). A direct projection from area V1 and V3A of the rhesus monkey visual cortex. Proceedings of the Royal Society B (London) 207, 499–506.CrossRefGoogle ScholarPubMed
78
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Cortical afferents of visual area MT in the Cebus monkey: Possible homologies between New and old World monkeys
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Cortical afferents of visual area MT in the Cebus monkey: Possible homologies between New and old World monkeys
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Cortical afferents of visual area MT in the Cebus monkey: Possible homologies between New and old World monkeys
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *