Skip to main content Accessibility help
×
Home
Hostname: page-component-79b67bcb76-tlg78 Total loading time: 0.234 Render date: 2021-05-15T03:00:39.520Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Self-Reported Symptoms of COVID-19, Including Symptoms Most Predictive of SARS-CoV-2 Infection, Are Heritable

Published online by Cambridge University Press:  09 February 2021

Frances M. K. Williams
Affiliation:
Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King’s College London, London, UK
Maxim B. Freidin
Affiliation:
Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King’s College London, London, UK
Massimo Mangino
Affiliation:
Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King’s College London, London, UK NIHR Biomedical Research Centre at Guy’s and St Thomas’ NHS Foundation Trust, London, UK
Simon Couvreur
Affiliation:
Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King’s College London, London, UK
Alessia Visconti
Affiliation:
Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King’s College London, London, UK
Ruth C. E. Bowyer
Affiliation:
Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King’s College London, London, UK
Caroline I. Le Roy
Affiliation:
Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King’s College London, London, UK
Mario Falchi
Affiliation:
Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King’s College London, London, UK
Olatz Mompeó
Affiliation:
Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King’s College London, London, UK
Carole Sudre
Affiliation:
Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
Richard Davies
Affiliation:
ZOE Global Ltd, London, UK
Christopher Hammond
Affiliation:
Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King’s College London, London, UK
Cristina Menni
Affiliation:
Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King’s College London, London, UK
Claire J. Steves
Affiliation:
Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King’s College London, London, UK
Tim D. Spector
Affiliation:
Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King’s College London, London, UK
Corresponding
E-mail address:
Get access

Abstract

Susceptibility to infection such as SARS-CoV-2 may be influenced by host genotype. TwinsUK volunteers (n = 3261) completing the C-19 COVID-19 symptom tracker app allowed classical twin studies of COVID-19 symptoms, including predicted COVID-19, a symptom-based algorithm to predict true infection, derived from app users tested for SARS-CoV-2. We found heritability of 49% (32−64%) for delirium; 34% (20−47%) for diarrhea; 31% (8−52%) for fatigue; 19% (0−38%) for anosmia; 46% (31−60%) for skipped meals and 31% (11−48%) for predicted COVID-19. Heritability estimates were not affected by cohabiting or by social deprivation. The results suggest the importance of host genetics in the risk of clinical manifestations of COVID-19 and provide grounds for planning genome-wide association studies to establish specific genes involved in viral infectivity and the host immune response.

Type
Articles
Copyright
© The Author(s), 2021. Published by Cambridge University Press in association with International Society for Twin Studies

Access options

Get access to the full version of this content by using one of the access options below.

References

Ai, T., Yang, Z., Hou, H., Zhan, C., Chen, C., Lv, W., & Xia, L. (2020). Correlation of chest CT and RT-PCR testing in Coronavirus disease 2019 (COVID-19) in China: A REPORT OF 1014 CASES. Radiology, 296, E32E40.CrossRefGoogle ScholarPubMed
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716723.CrossRefGoogle Scholar
Chapman, S. J., & Hill, A. V. (2012). Human genetic susceptibility to infectious disease. Nature Reviews Genetics, 13, 175188.CrossRefGoogle ScholarPubMed
COVID-19 Host Genetics Initiative. (2020). European Journal of Human Genetics, 28, 715718.CrossRefGoogle Scholar
Delanghe, J. R., Speeckaert, M. M., & De Buyzere, M. L. (2020). The host’s angiotensin-converting enzyme polymorphism may explain epidemiological findings in COVID-19 infections. Clinica Chimica Acta, 505, 192193.CrossRefGoogle ScholarPubMed
Drew, D. A., Nguyen, L. H., Steves, C. J., Menni, C., Freydin, M., Varsavsky, T., & COPE Consortium. (2020). Rapid implementation of mobile technology for real-time epidemiology of COVID-19. Science, 368, 13621367 CrossRefGoogle ScholarPubMed
Elhabyan, A., Elyaacoub, S., Sanad, E., Abukhadra, A., Elhabyan, A., & Dinu, V. (2020). The role of host genetics in susceptibility to severe viral infections in humans and insights into host genetics of severe COVID-19: A systematic review. Virus Research, 289, 198163.CrossRefGoogle ScholarPubMed
Falconer, D. S., & Mackay, T. F. C. (1996). Introduction to quantitative genetics (4th ed.). Pearson Education.Google Scholar
Fumagalli, M., Pozzoli, U., Cagliani, R., Comi, G. P., Bresolin, N., Clerici, M., & Sironi, M. (2010). Genome-Wide identification of susceptibility alleles for viral infections through a population genetics approach. PLOS Genetics, 6, e1000849.CrossRefGoogle ScholarPubMed
Gengler, I., Wang, J. C., Speth, M. M., & Sedaghat, A. R. (2020). Sinonasal pathophysiology of SARS-CoV-2 and COVID-19: A systematic review of the current evidence. Laryngoscope Investigative Otolaryngology, 5, 354359.CrossRefGoogle ScholarPubMed
Hoffmann, M., Kleine-Weber, H., Schroeder, S., Kruger, N., Herrler, T., Erichsen, S., & Pohlmann, S. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181, 271280.CrossRefGoogle ScholarPubMed
Huang, H. H., Shih, W. L., Li, Y. H., Wu, C. F., Chen, P. J., Lin, C. L., & Yu, M. W. (2011). Hepatitis B viraemia: Its heritability and association with common genetic variation in the interferon gamma signalling pathway. Gut, 60, 99107.CrossRefGoogle ScholarPubMed
Keynan, Y., Malik, S., & Fowke, K. R. (2013). The role of polymorphisms in host immune genes in determining the severity of respiratory illness caused by pandemic H1N1 influenza. Public Health Genomics, 16, 916.CrossRefGoogle ScholarPubMed
Lopera Maya, E. A., van der Graaf, A., Lanting, P., van der Geest, M., Fu, J., Swertz, M., & Lifelines Study. (2020). Lack of association between genetic variants at ACE2 and TMPRSS2 genes involved in SARS-CoV-2 infection and human quantitative phenotypes. Frontiers in Genetics, 11, 613.Google ScholarPubMed
Menni, C., Valdes, A. M., Freidin, M. B., Sudre, C. H., Nguyen, L. H., Drew, D. A., & Spector, T. D. (2020). Real-time tracking of self-reported symptoms to predict potential COVID-19. Nature Medicine, 26, 10371040.CrossRefGoogle ScholarPubMed
Neale, M. C., Hunter, M. D., Pritikin, J. N., Zahery, M., Brick, T. R., Kirkpatrick, R. M., & Boker, S. M. (2016). OpenMx 2.0: Extended structural equation and statistical modeling. Psychometrika, 81, 535549.CrossRefGoogle ScholarPubMed
Oran, D. P., & Topol, E. J. (2020). Prevalence of asymptomatic SARS-CoV-2 infection: A narrative review. Annals of Internal Medicine, 173, 362367.CrossRefGoogle ScholarPubMed
Passarelli, P. C., Lopez, M. A., Mastandrea Bonaviri, G. N., Garcia-Godoy, F., & D’Addona, A. (2020). Taste and smell as chemosensory dysfunctions in COVID-19 infection. American Journal of Dentistry, 33, 135137.Google ScholarPubMed
Powell, T. R., Duarte, R. R. R., Hotopf, M., Hatch, S. L., de Mulder Rougvie, M., Breen, G. D., & Nixon, D. F. (2020). The behavioral, cellular and immune mediators of HIV-1 acquisition: new insights from population genetics. Scientific Reports, 10, 3304.CrossRefGoogle ScholarPubMed
Rajkumar, R. P. (2020). COVID-19 and mental health: A review of the existing literature. Asian Journal of Psychiatryr, 52, 102066.CrossRefGoogle ScholarPubMed
Severe Covid-19 GWAS Group, Ellinghaus, D., Degenhardt, F., Bujanda, L., Buti, M., Albillos, A., … Karlsen, T. H. (2020). Genomewide association study of severe Covid-19 with respiratory failure. New England Journal of Medicine, 383, 15221534.Google ScholarPubMed
Smoller, J. W. (2016). The genetics of stress-related disorders: PTSD, depression, and anxiety disorders. Neuropsychopharmacology, 41, 297319.CrossRefGoogle ScholarPubMed
Strope, J. D., Pharm, D. C., & Figg, W. D. (2020). TMPRSS2: potential biomarker for COVID-19 outcomes. Journal of Clinical Pharmacology, 60, 801807.CrossRefGoogle ScholarPubMed
Vaninov, N. (2020). In the eye of the COVID-19 cytokine storm. Nature Reviews Immunology, 20, 277.CrossRefGoogle ScholarPubMed
Verdi, S., Abbasian, G., Bowyer, R. C. E., Lachance, G., Yarand, D., Christofidou, P., & Steves, C. J. (2019). TwinsUK: the UK Adult Twin Registry update. Twin Research and Human Genetics, 22, 523529.CrossRefGoogle ScholarPubMed
Witte, J. S., Carlin, J. B., & Hopper, J. L. (1999). Likelihood-Based approach to estimating twin concordance for dichotomous traits. Genetic Epidemiology, 16, 290304.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Yang, L., & Tu, L. (2020). Implications of gastrointestinal manifestations of COVID-19. Lancet Gastroenterology & Hepatology, 5, 629630.CrossRefGoogle ScholarPubMed
Zuo, T., Zhang, F., Lui, G. C. Y., Yeoh, Y. K., Li, A. Y. L., Zhan, H., & Ng, S. C. (2020). Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology, 159, 944955.CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Williams et al. supplementary material

Williams et al. supplementary material

Download Williams et al. supplementary material(PDF)
PDF 624 KB

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Self-Reported Symptoms of COVID-19, Including Symptoms Most Predictive of SARS-CoV-2 Infection, Are Heritable
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Self-Reported Symptoms of COVID-19, Including Symptoms Most Predictive of SARS-CoV-2 Infection, Are Heritable
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Self-Reported Symptoms of COVID-19, Including Symptoms Most Predictive of SARS-CoV-2 Infection, Are Heritable
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *