Skip to main content Accessibility help
Hostname: page-component-768dbb666b-ptlz9 Total loading time: 0.437 Render date: 2023-02-05T17:25:31.338Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Educational Attainment Polygenic Scores: Examining Evidence for Gene–Environment Interplay with Adolescent Alcohol, Tobacco and Cannabis Use

Published online by Cambridge University Press:  03 October 2022

Christal N. Davis*
Department of Psychological Sciences, University of Missouri, Columbia, MO65211, USA
Ian R. Gizer
Department of Psychological Sciences, University of Missouri, Columbia, MO65211, USA
Lucía Colodro-Conde
QIMR Berghofer Medical Research Institute, Brisbane, Queensland4006, Australia
Dixie J. Statham
Federation University, Ballarat, Victoria3350, Australia
Nicholas G. Martin
QIMR Berghofer Medical Research Institute, Brisbane, Queensland4006, Australia
Wendy S. Slutske
Center for Tobacco Research and Intervention and Department of Family Medicine and Community Health, University of Wisconsin School of Medicine and Public Health, Madison, WI53711, USA
Author for correspondence: Christal N. Davis, Email:
Get access


Genes associated with educational attainment may be related to or interact with adolescent alcohol, tobacco and cannabis use. Potential gene–environment interplay between educational attainment polygenic scores (EA-PGS) and adolescent alcohol, tobacco, and cannabis use was evaluated with a series of regression models fitted to data from a sample of 1871 adult Australian twins. All models controlled for age, age2, cohort, sex and genetic ancestry as fixed effects, and a genetic relatedness matrix was included as a random effect. Although there was no evidence that adolescent alcohol, tobacco or cannabis use interacted with EA-PGS to influence educational attainment, there was a significant, positive gene–environment correlation with adolescent alcohol use at all PGS thresholds (ps <.02). Higher EA-PGS were associated with an increased likelihood of using alcohol as an adolescent (ΔR2 ranged from 0.5% to 1.1%). The positive gene–environment correlation suggests a complex relationship between educational attainment and alcohol use that is due to common genetic factors.

© The Author(s), 2022. Published by Cambridge University Press on behalf of International Society for Twin Studies

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Bachman, J. G., Johnston, L. D., & O’Malley, P. M. (1981). Smoking, drinking, and drug use among American high school students: Correlates and trends, 1975–1979. American Journal of Public Health, 71, 5969. doi:10.2105/AJPH.71.1.59 CrossRefGoogle ScholarPubMed
Bates, T. C., Maher, B. S., Medland, S. E., McAloney, K., Wright, M. J., Hansell, N. K., Kendler, K. S., Martin, N. G., & Gillespie, N. A. (2018). The nature of nurture: using a virtual-parent design to test parenting effects on children’s educational attainment in genotyped families. Twin Research and Human Genetics, 21, 7383. doi:10.1017/thg.2018.11 CrossRefGoogle ScholarPubMed
Bellis, M. A., Hughes, K., Morleo, M., Tocque, K., Hughes, S., Allen, T., Harrison, D., & Fe-Rodriguez, E. (2007). Predictors of risky alcohol consumption in schoolchildren and their implications for preventing alcohol-related harm. Substance Abuse Treatment, Prevention, and Policy, 2, 15. doi:10.1186/1747-597X-2-15 CrossRefGoogle ScholarPubMed
Belsky, D. W., Caspi, A., Arseneault, L., Corcoran, D. L., Domingue, B. W., Harris, K. M., Houts, R. M., Mill, J. S., Moffitt, T. E., Prinz, J., Sugden, K., Wertz, J., Williams, B., & Odgers, C. L. (2019). Genetics and the geography of health, behaviour and attainment. Nature Human Behaviour, 3, 576586. doi:10.1038/s41562-019-0562-1 CrossRefGoogle ScholarPubMed
Bryant, A. L., & Zimmerman, M. A. (2002). Examining the effects of academic beliefs and behaviors on changes in substance use among urban adolescents. Journal of Educational Psychology, 94, 621637. doi:10.1037/0022-0663.94.3.621 CrossRefGoogle Scholar
Bucholz, K. K., Cadoret, R., Cloninger, C. R., Dinwiddie, S. H., Hesselbrock, V. M., Nurnberger, J. I. Jr, Reich, T., Schmidt, I., & Schuckit, M. A. (1994). A new, semi-structured psychiatric interview for use in genetic linkage studies: A report on the reliability of the SSAGA. Journal of Studies on Alcohol, 55, 149158.CrossRefGoogle ScholarPubMed
Catalano, R. F., Kosterman, R., Hawkins, J. D., Newcomb, M. D., & Abbott, R. D. (1996). Modeling the etiology of adolescent substance use: A test of the social development model. Journal of Drug Issues, 26, 429455. doi:10.1177/002204269602600207 CrossRefGoogle ScholarPubMed
Chang, C. C., Chow, C. C., Tellier, L. C. A. M., Vattikuti, S., Purcell, S. M., & Lee, J. J. (2015). Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience, 4. doi:10.1186/s13742-015-0047-8 CrossRefGoogle Scholar
Cheesman, R., Hunjan, A., Coleman, J. R. I., Ahmadzadeh, Y., Plomin, R., McAdams, T. A., Eley, T. C., & Breen, G. (2020). Comparison of adopted and nonadopted individuals reveals gene–environment interplay for education in the UK Biobank. Psychological Science, 31, 582591. doi:10.1177/0956797620904450 CrossRefGoogle ScholarPubMed
Choi, S. W., Mak, T. S.-H., & O’Reilly, P. F. (2020). Tutorial: A guide to performing polygenic risk score analyses. Nature Protocols, 15, 27592772. doi:10.1038/s41596-020-0353-1 CrossRefGoogle ScholarPubMed
Chou, L.-C., Ho, C.-Y., Chen, C.-Y., & Chen, W. J. (2006). Truancy and illicit drug use among adolescents surveyed via street outreach. Addictive Behaviors, 31, 149154. doi:10.1016/j.addbeh.2005.04.011 CrossRefGoogle ScholarPubMed
da Silva, P. M. C., Galon, T., Zerbetto, S. R., de Moura, A. A. M., Volpato, R. J., & de Gonçalves, A. M. S. (2018). Teachers’ perceptions, difficulties, and actions facing drugs at the school environment. Educação e Pesquisa, 44. doi:10.1590/S1678-4634201844182015 Google Scholar
Davies, N. M., Dickson, M., Smith, G. D., Van Den Berg, G. J., & Windmeijer, F. (2018). The causal effects of education on health outcomes in the UK Biobank. Nature Human Behaviour, 2, 117125. doi:10.1038/s41562-017-0279-y CrossRefGoogle ScholarPubMed
Davis, C. N., Gizer, I. R., Lynskey, M. T., Statham, D. J., Heath, A. C., Martin, N. G., & Slutske, W. S. (2022). Adolescent substance use and high school noncompletion: Exploring the nature of the relationship using a discordant twin design. Addiction. doi:10.1111/add.15996 CrossRefGoogle ScholarPubMed
Erickson, J., El-Gabalawy, R., Palitsky, D., Patten, S., Mackenzie, C. S., Stein, M. B., & Sareen, J. (2016). Educational attainment as a protective factor for psychiatric disorders: Findings from a nationally representative longitudinal study. Depression and Anxiety, 33, 10131022. doi:10.1002/da.22515 CrossRefGoogle ScholarPubMed
Grant, J. D., Scherrer, J. F., Lynskey, M. T., Agrawal, A., Duncan, A. E., Haber, J. R., Heath, A. C., & Bucholz, K. K. (2012). Associations of alcohol, nicotine, cannabis, and drug use/dependence with educational attainment: Evidence from Cotwin-Control analyses. Alcoholism: Clinical and Experimental Research, 36, 14121420. doi:10.1111/j.1530-0277.2012.01752.x CrossRefGoogle ScholarPubMed
Henry, K. L., & Thornberry, T. P. (2010). Truancy and escalation of substance use during adolescence. Journal of Studies on Alcohol and Drugs, 71, 115124. doi:10.15288/jsad.2010.71.115 CrossRefGoogle ScholarPubMed
Hicks, B. M., Clark, D. A., Deak, J. D., Schaefer, J. D., Liu, M., Jang, S., Durbin, C. E., Johnson, W., Wilson, S., Iacono, W. G., McGue, M., & Vrieze, S. I. (2021). Polygenic scores for smoking and educational attainment have independent influences on academic success and adjustment in adolescence and educational attainment in adulthood. PLOS ONE, 16, e0255348. doi:10.1371/journal.pone.0255348 CrossRefGoogle ScholarPubMed
Hussong, A. M., Curran, P. J., Moffitt, T. E., Caspi, A., & Carrig, M. M. (2004). Substance abuse hinders desistance in young adults’ antisocial behavior. Development and Psychopathology, 16, 10291046. doi:10.1017/S095457940404012X CrossRefGoogle ScholarPubMed
Jansen, P. R., Polderman, T. J. C., Bolhuis, K., Ende, J., Jaddoe, V. W. V., Verhulst, F. C., White, T., Posthuma, D., & Tiemeier, H. (2018). Polygenic scores for schizophrenia and educational attainment are associated with behavioural problems in early childhood in the general population. Journal of Child Psychology and Psychiatry, 59, 3947. doi:10.1111/jcpp.12759 CrossRefGoogle ScholarPubMed
Kaag, A. M., van Wingen, G. A., Caan, M. W., Homberg, J. R., van den Brink, W., & Reneman, L. (2017). White matter alterations in cocaine users are negatively related to the number of additionally (ab) used substances. Addiction Biology, 22, 10481056. doi:10.1111/adb.12375 CrossRefGoogle Scholar
Kaplan, R. M., Fang, Z., & Kirby, J. (2017). Educational attainment and health outcomes: Data from the Medical Expenditures Panel Survey. Health Psychology, 36, 598608. doi:10.1037/hea0000431 CrossRefGoogle ScholarPubMed
Keller, M. C. (2014). Gene × environment interaction studies have not properly controlled for potential confounders: The problem and the (simple) solution. Biological Psychiatry, 75, 1824. doi:10.1016/j.biopsych.2013.09.006 CrossRefGoogle Scholar
Kling, J. R., Liebman, J. B., & Katz, L. F. (2007). Experimental analysis of neighborhood effects. Econometrica, 75, 83119. doi:10.1111/j.1468-0262.2007.00733.x CrossRefGoogle Scholar
Kong, A., Thorleifsson, G., Frigge Michael, L., Vilhjalmsson Bjarni, J., Young Alexander, I., Thorgeirsson Thorgeir, E., Benonisdottir, S., Oddsson, A., Halldorsson, B. V., Masson, G., Gudbjartsson, D. F., Helgason, A., Bjornsdottir, G., Thorsteinsdottir, U., & Stefansson, K. (2018). The nature of nurture: Effects of parental genotypes. Science, 359, 424428. doi:10.1126/science.aan6877 CrossRefGoogle ScholarPubMed
Lager, A. C. J., & Torssander, J. (2012). Causal effect of education on mortality in a quasi-experiment on 1.2 million Swedes. Proceedings of the National Academy of Sciences, 109, 84618466. doi:10.1073/pnas.110583910 CrossRefGoogle Scholar
Lee, J. J., Wedow, R., Okbay, A., Kong, E., Maghzian, O., Zacher, M., Nguyen-Viet, T. A., Bowers, P., Sidorenko, J., Linnér, R. K., Fontana, M. A., Kundu, T., Lee, C., Li, H., Li, R., Royer, R., Timshel, P. N., Walters, R. K., Willoughby, E. A., Yengo, L., … Cesarini, D. (2018). Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nature Genetics, 50, 11121121. doi:10.1038/s41588-018-0147-3 CrossRefGoogle ScholarPubMed
Lintonen, T., & Nevalainen, J. (2017). Has the role of personal income in alcohol drinking among teenagers changed between 1983 and 2013: A series of nationally representative surveys in Finland. BMJ Open, 7, e013994. doi:10.1136/bmjopen-2016-013994 CrossRefGoogle ScholarPubMed
Lisdahl, K. M., Sher, K. J., Conway, K. P., Gonzalez, R., Feldstein Ewing, S. W., Nixon, S. J., Tapert, S., Bartsch, H., Goldstein, R. Z., & Heitzeg, M. (2018). Adolescent brain cognitive development (ABCD) study: Overview of substance use assessment methods. Developmental Cognitive Neuroscience, 32, 8096. doi:10.1016/j.dcn.2018.02.007 CrossRefGoogle ScholarPubMed
Lubman, D. I., Yücel, M., & Hall, W. D. (2007). Substance use and the adolescent brain: A toxic combination? Journal of Psychopharmacology, 21, 792794. doi:10.1177/0269881107078309 CrossRefGoogle Scholar
Luthar, S. S. (2003). The culture of affluence: Psychological costs of material wealth. Child Development, 74, 15811593. doi:10.1046/j.1467-8624.2003.00625.x CrossRefGoogle ScholarPubMed
Luthar, S. S., & Becker, B. E. (2002). Privileged but pressured? A study of affluent youth. Child Development, 73, 15931610. doi:10.1111/1467-8624.00492 CrossRefGoogle ScholarPubMed
Luthar, S. S., & D’Avanzo, K. (1999). Contextual factors in substance use: A study of suburban and inner-city adolescents. Development and Psychopathology, 11, 845867. doi:10.1017/S0954579499002357 CrossRefGoogle ScholarPubMed
Luthar, S. S., & Latendresse, S. J. (2005). Children of the affluent: Challenges to well-being. Current Directions in Psychological Science, 14, 4953. doi:10.1111/j.0963-7214.2005.00333.x CrossRefGoogle ScholarPubMed
Lynskey, M. T., Heath, A. C., Nelson, E. C., Bucholz, K. K., Madden, P. A. F., Slutske, W. S., Statham, D. J., & Martin, N. G. (2002). Genetic and environmental contributions to cannabis dependence in a national young adult twin sample. Psychological Medicine, 32, 195207. doi:10.1017/S0033291701005062 CrossRefGoogle Scholar
Malone, S. M., Taylor, J., Marmorstein, N. R., McGue, M., & Iacono, W. G. (2004). Genetic and environmental influences on antisocial behavior and alcohol dependence from adolescence to early adulthood. Development and Psychopathology, 16, 943966. doi:10.1017/S0954579404040088 CrossRefGoogle ScholarPubMed
Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., McCarthy, M. I., Ramos, E. M., Cardon, L. R., Chakravarti, A., Cho, J. H., Guttmacher, A. E., Kong, A., Kruglyak, L., Mardis, E., Rotimi, C. N., Slatkin, M., Valle, D., Whittemore, A. S., … Visscher, P. M. (2009). Finding the missing heritability of complex diseases. Nature, 461, 747753. doi:10.1038/nature08494 CrossRefGoogle ScholarPubMed
McGee, T. R., Hayatbakhsh, M. R., Bor, W., Aird, R. L., Dean, A. J., & Najman, J. M. (2015). The impact of snares on the continuity of adolescent-onset antisocial behaviour: A test of Moffitt’s developmental taxonomy. Australian & New Zealand Journal of Criminology, 48, 345366. doi:10.1177/0004865815589828 CrossRefGoogle Scholar
Moffitt, T. E. (1993). Adolescence-limited and life-course-persistent antisocial behavior: A developmental taxonomy. Psychological Review, 100, 674701. doi:10.1037/0033-295X.100.4.674 CrossRefGoogle ScholarPubMed
Nguyen, T. T., Tchetgen, E. J. T., Kawachi, I., Gilman, S. E., Walter, S., Liu, S. Y., Manly, J. J., & Glymour, M. M. (2016). Instrumental variable approaches to identifying the causal effect of educational attainment on dementia risk. Annals of Epidemiology, 26, 7176. doi:10.1016/j.annepidem.2015.10.006 CrossRefGoogle ScholarPubMed
Ni, G., Zeng, J., Revez, J. A., Wang, Y., Zheng, Z., Ge, T., Restuadi, R., Kiewa, J., Nyholt, D. R., Coleman, J. R. I., Smoller, J. W., Schizophrenia Working Group of the Psychiatric Genomics Consortium; Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium; Yang, J., Visscher, P. M., & Wray, N. R. (2021). A comparison of ten polygenic score methods for psychiatric disorders applied across multiple cohorts. Biological Psychiatry, 90, 611620. doi:10.1016/j.biopsych.2021.04.018 CrossRefGoogle ScholarPubMed
Okbay, A., Wu, Y., Wang, N., Jayashankar, H., Bennett, M., Nehzati, S. M., Sidorenko, J., Kweon, H., Goldman, G., Gjorgjieva, T., Jiang, Y., Hicks, B., Tian, C., Hinds, D. A., Ahlskog, R., Magnusson, P. K. E., Oskarsson, S., Hayward, C., Campbell, A., … LifeLines Cohort, S. (2022). Polygenic prediction of educational attainment within and between families from genome-wide association analyses in 3 million individuals. Nature Genetics, 54, 437449. doi:10.1038/s41588-022-01016-z CrossRefGoogle ScholarPubMed
Østergaard, J., Järvinen, M., & Andreasen, A. G. (2018). A matter of rules? A longitudinal study of parents’ influence on young people’s drinking trajectories. European Addiction Research, 24, 206215. doi:10.1159/000492323 CrossRefGoogle Scholar
Pasman, J. A., Verweij, K. J. H., Abdellaoui, A., Hottenga, J. J., Fedko, I. O., Willemsen, G., Boomsma, D. I., & Vink, J. M. (2020). Substance use: Interplay between polygenic risk and neighborhood environment. Drug and Alcohol Dependence, 209, 107948. doi:10.1016/j.drugalcdep.2020.107948 CrossRefGoogle ScholarPubMed
Patrick, M. E., Wightman, P., Schoeni, R. F., & Schulenberg, J. E. (2012). Socioeconomic status and substance use among young adults: A comparison across constructs and drugs. Journal of Studies on Alcohol and Drugs, 73, 772782. doi:10.15288/jsad.2012.73.772 CrossRefGoogle ScholarPubMed
Pereira, R. D., Biroli, P., Galama, T., von Hinke, S., van Kippersluis, H., Rietveld, C. A., & Thom, K. (2022). Gene-environment interplay in the social sciences. arXiv preprint arXiv:2203.02198. doi:10.48550/arXiv.2203.02198 Google Scholar
Purcell, S. M., & Chang, C. (2015). PLINK 1.9. Google Scholar
Rose, R. J., Winter, T., Viken, R. J., & Kaprio, J. (2014). Adolescent alcohol abuse and adverse adult outcomes: Evaluating confounds with drinking-discordant twins. Alcoholism: Clinical and Experimental Research, 38, 23142321. doi:10.1111/acer.12491 CrossRefGoogle ScholarPubMed
RStudio Team. (2018). RStudio: Integrated development for R. RStudio.Google Scholar
Selzam, S., Ritchie, S. J., Pingault, J.-B., Reynolds, C. A., O’Reilly, P. F., & Plomin, R. (2019). Comparing within- and between-family polygenic score prediction. The American Journal of Human Genetics, 105, 351363. doi:10.1016/j.ajhg.2019.06.006 CrossRefGoogle ScholarPubMed
Silventoinen, K., Jelenkovic, A., Sund, R., Latvala, A., Honda, C., Inui, F., Tomizawa, R., Watanabe, M., Sakai, N., Rebato, E., Busjahn, A., Tyler, J., Hopper, J. L., Ordoñana, J. R., Sánchez-Romera, J. F., Colodro-Conde, L., Calais-Ferreira, L., Oliveira, V. C., … Kaprio, J. (2020). Genetic and environmental variation in educational attainment: An individual-based analysis of 28 twin cohorts. Scientific Reports, 10, 12681. doi:10.1038/s41598-020-69526-6 CrossRefGoogle ScholarPubMed
Sinnwell, J. P., Therneau, T. M., & Schaid, D. J. (2014). The kinship2 R package for pedigree data. Human Heredity, 78, 9193. doi:10.1159/000363105 CrossRefGoogle ScholarPubMed
Slutske, W. S., Davis, C. N., Lynskey, M. T., Heath, A. C., & Martin, N. G. (2022). An epidemiologic, longitudinal, and discordant-twin study of the association between gambling disorder and suicidal behaviors. Clinical Psychological Science. doi:10.1177/21677026211062599 CrossRefGoogle ScholarPubMed
Slutske, W. S., Deutsch, A. R., & Piasecki, T. M. (2016). Neighborhood contextual factors, alcohol use, and alcohol problems in the United States: Evidence from a nationally representative study of young adults. Alcoholism: Clinical and Experimental Research, 40, 10101019. doi:10.1111/acer.13033 CrossRefGoogle ScholarPubMed
Smith, P. G., & Day, N. E. (1984). The design of case-control studies: The influence of confounding and interaction effects. International Journal of Epidemiology, 13, 356365. doi:10.1093/ije/13.3.356 CrossRefGoogle ScholarPubMed
Spinath, F. M. (2010). Genetically sensitive sample designs. In German Data Forum (Eds.), Building on Progress: Expanding the Research Infrastructure for the Social, Economic, and Behavioral Sciences (1st ed., pp. 353366). Budrich UniPress.Google Scholar
Squeglia, L. M., Jacobus, J., & Tapert, S. F. (2009). The influence of substance use on adolescent brain development. Clinical EEG and Neuroscience, 40, 3138. doi:10.1177/155005940904000110 CrossRefGoogle ScholarPubMed
Squeglia, L. M., Tapert, S. F., Sullivan, E. V., Jacobus, J., Meloy, M., Rohlfing, T., & Pfefferbaum, A. (2015). Brain development in heavy-drinking adolescents. American Journal of Psychiatry, 172, 531542. doi:10.1176/appi.ajp.2015.14101249 CrossRefGoogle ScholarPubMed
Vazquez, A. I., Bates, D. M., Rosa, G. J. M., Gianola, D., & Weigel, K. A. (2010). Technical note: An R package for fitting generalized linear mixed models in animal breeding1. Journal of Animal Science, 88, 497504. doi:10.2527/jas.2009-1952 CrossRefGoogle Scholar
Verweij, K. J., Huizink, A. C., Agrawal, A., Martin, N. G., & Lynskey, M. T. (2013). Is the relationship between early-onset cannabis use and educational attainment causal or due to common liability? Drug and Alcohol Dependence, 133, 580586. doi:10.1016/j.drugalcdep.2013.07.034 CrossRefGoogle ScholarPubMed
Walden, B., McGue, M., Lacono, W. G., Burt, S. A., & Elkins, I. (2004). Identifying shared environmental contributions to early substance use: The respective roles of peers and parents. Journal of Abnormal Psychology, 113, 440450. doi:10.1037/0021-843X.113.3.440 CrossRefGoogle ScholarPubMed
Waldron, J. S., Malone, S. M., McGue, M., & Iacono, W. G. (2018). A co-twin control study of the relationship between adolescent drinking and adult outcomes. Journal of Studies on Alcohol and Drugs, 79, 635643. doi:10.15288/jsad.2018.79.635 CrossRefGoogle ScholarPubMed
Wang, T. (2021). The impact of education on mental health: Evidence from compulsory education law in China. Applied Economics Letters, 17. doi:10.1080/13504851.2021.1946002 Google Scholar
Wentzel, K. R. (1999). Social-motivational processes and interpersonal relationships: Implications for understanding motivation at school. Journal of Educational Psychology, 91, 7697. doi:10.1037/0022-0663.91.1.76 CrossRefGoogle Scholar
Zucker, R. A., & Harford, T. C. (1983). National study of the demography of adolescent drinking practices in 1980. Journal of Studies on Alcohol, 44, 974985. doi:10.15288/jsa.1983.44.974 CrossRefGoogle ScholarPubMed
Supplementary material: File

Davis et al. supplementary material

Davis et al. supplementary material

Download Davis et al. supplementary material(File)
File 19 KB

Save article to Kindle

To save this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Educational Attainment Polygenic Scores: Examining Evidence for Gene–Environment Interplay with Adolescent Alcohol, Tobacco and Cannabis Use
Available formats

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Educational Attainment Polygenic Scores: Examining Evidence for Gene–Environment Interplay with Adolescent Alcohol, Tobacco and Cannabis Use
Available formats

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Educational Attainment Polygenic Scores: Examining Evidence for Gene–Environment Interplay with Adolescent Alcohol, Tobacco and Cannabis Use
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *