Hostname: page-component-7bb8b95d7b-pwrkn Total loading time: 0 Render date: 2024-09-22T11:54:07.581Z Has data issue: false hasContentIssue false

Future Trends and Goals in Ostracode Research

Published online by Cambridge University Press:  21 July 2017

Jonathan A. Holmes*
Affiliation:
Environmental Change Research Centre, University College London, 26 Bedford Way, London, WC1H 0AP, UK
Get access

Abstract

In recent decades, research on ostracodes has grown dramatically. While many aspects of the group have been investigated, this review focuses on the paleoenvironmental applications of ostracodes from marine and nonmarine environments. It is argued that while ostracodes have great potential as paleoenvironmental tools, much of that potential has not yet been fully realized because of our imperfect understanding of ostracode biology, taxonomy, systematics and ecology. Future developments will be sure to result from additional studies in these areas, and will also be effected by exchange of ideas with scientists working on related proxies. However, the flow of ideas should not be one-way; workers in other disciplines can also learn from the study of ostracodes.

Type
Research Article
Copyright
Copyright © 2003 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alin, S. R., O'Reilly, C. M., Cohen, A. S., Dettman, D. L., Palacios-Fest, M. R., and Mckee, B. A. 2002. Effects of land-use change on aquatic biodiversity: A view from the paleorecord at Lake Tanganyika, East Africa. Geology, 30: 11431146.2.0.CO;2>CrossRefGoogle Scholar
Allen, B.D., and Anderson, R. Y. 2000. A continuous, high-resolution record of late Pleistocene climate variability from the Estancia basin, New Mexico, Bulletin of the Geological Society of America, 112: 14441458.Google Scholar
Anadón, P., Gliozzi, E., and Mazzini, I. 2002. Paleoeonvironmental reconstruction of marginal marine environments from combined paleoecological and geochemical analyses on ostracods, pp. 227247 In Holmes, J. A. and Chivas, A. R. (eds.) The Ostracoda: Applications in Quaternary Research, Geophysical Monograph Series, 131: American Geophysical Union: Washington, D. C. Google Scholar
Bate, R. H., and Robinson, J. E. (eds.) 1978. A Stratigraphical Atlas of British Ostracoda. Geological Journal Special Issue, 8: 493 p.Google Scholar
Bischoff, J.L., Bullen, T. D., Canavan, R.W. Iv, and Forester, R.M. 1998. A test of uranium series dating of ostracode shells from the Last Interglaciation at Owens Lake, California, Core OL-92, pp. 180186. In Bischoff, J.L. (ed.) The Last Interglaciation at Owens Lake, California: Core OL-92, U.S. Geological Survey, Open-File Report 98–132.Google Scholar
Bischoff, J. L., and Cummings, K. 2001. Wisconsin glaciation of the Sierra Nevada (79,000 − 15,000 yrBP) as recorded by rock flour in sediments of Owens Lake, California. Quaternary Research, 55: 1421.CrossRefGoogle Scholar
Boomer, I., and Lord, A.R. (eds.) 1999. Marine Ostracoda and Global Change. Marine Micropaleontology, 37: 227379.Google Scholar
Boyle, E.A. 1981. Cadmium, zinc, copper and barium in foraminifera tests. Earth and Planetary Science Letters, 53: 111135.Google Scholar
Brasier, M.D., 1980. Microfossils. George Allen and Unwin: London, 193p.Google Scholar
Brown, S. J., and Elderfield, H. 1996. Variations in Mg/Ca and Sr/Ca ratios of planktonic foraminifera caused by postdepositional dissolution: evidence of shallow Mg-dependent dissolution. Paleoceanography, 11: 543551.Google Scholar
Carbonel, P., Colin, J. P., Danielopol, D.L., Löffler, H., and Neustrueva, I. 1988. Paleoecology of limnic ostracodes: a review of some major topics. Palaeogeography, Palaeoclimatology, Palaeoecology, 62: 413461.CrossRefGoogle Scholar
Carbonel, P., Farmer, M. and Lete, C., 1990. The morphological variability of Cytherissa lacustris ecophenotypic aspects, pp. 247259 In Danielopol, D. L., Carbonel, P., and Colin, J.-P., (eds.) Cytherissa (Ostracoda) - the Drosophila of Paleolimnology. Bulletin de l'institut de Géologie du Bassin d'Aquitaine, 47/48.Google Scholar
Chivas, A. R., De Deckker, P., and Shelley, J. M. G. 1985. Strontium content of ostracods indicates lacustrine palaeosalinity, Nature, 316: 251253.CrossRefGoogle Scholar
Chivas, A. R., De Deckker, P. and Shelley, J. M. G., 1986. Magnesium and strontium in nonmarine ostracod shells as indicators of palaeosalinity and palaeotemperature. Hydrobiologia, 143: 135142.CrossRefGoogle Scholar
Colin, J.-P., and Lethiers, F., 1988. The importance of ostracodes in biostratigraphic analysis, pp. 2745 In De Deckker, P., Colin, J.-P. and Peypouquet, J.-P. (eds.) Ostracoda in the Earth Sciences. Elsevier: Amsterdam.Google Scholar
Crasquin-Soleau, S., Braccini, E., and Lethiers, F. (eds.) 1998. What about Ostracoda! Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine. 20, 432 p.Google Scholar
Cronblad, H. G., and Malmgren, B. A. 1981. Climatically controlled variation of Sr and Mg in Quaternary planktonic-foraminifera. Nature, 291: 6164.Google Scholar
Cronin, T. M., Boomer, I., Dwyer, G. S. and Rpodriguea-Lazaro, J. 2002. Ostracoda and paleoceanography, pp. 99119 In Holmes, J. A. and Chivas, A. R. (eds.) The Ostracoda: Applications in Quaternary Research, Geophysical Monograph Series, 131: American Geophysical Union: Washington, D. C. Google Scholar
Curry, B. B., 1999. An environmental tolerance index for ostracodes as indicators of physical and chemical factors in aquatic habitats. Palaeogeography, Palaeoclimatology, Palaeoecology, 148: 5163.CrossRefGoogle Scholar
De Deckker, P., Chivas, A. R., and Shelley, J. M. G. 1988. Paleoenvironment of the Messinian Mediterranean “Largo Mare” from strontium and magnesium in ostracode shells. Palaios, 3: 352358.CrossRefGoogle Scholar
De Deckker, P., Chivas, A. R., and Shelley, J. M. G. 1999. Uptake of Mg and Sr in the euryhaline ostracod Cyprideis determined from in vitro experiments. Palaeogeography, Palaeoclimatology, Palaeoecology, 148: 105116.Google Scholar
De Deckker, P. 2002. Ostracod palaeoecology, pp. 121134 In Holmes, J. A. and Chivas, A. R. (eds.) The Ostracoda: Applications in Quaternary Research, Geophysical Monograph Series, 131: American Geophysical Union: Washington, D.C. Google Scholar
Delorme, L. D. 1969. Ostracodes as Quaternary palaeoecological indicators. Canadian Journal of Earth Science, 6: 14711476.CrossRefGoogle Scholar
Delorme, L. D., and Zoltai, S. C. 1984. Distribution of an Arctic ostracod fauna in space and time. Quaternary Research, 21: 6573.Google Scholar
Dettman, D.L., Palacios-Fest, M., and Cohen, A. S. 2002. Comment on G. Wansard and F. Mezquita, The response of ostracode shell chemistry to seasonal change in a Mediterranean freshwater spring environment. Journal of Paleolimnology, 27: 487491.Google Scholar
Dwyer, G. S., Cronin, T. M., Baker, P. A., Raymo, M. E., Buzas, J. S., and Corrège, T., 1995. North Atlantic deepwater temperature change during Late Pliocene and Late Quaternary climatic cycles. Science, 270: 13471351.Google Scholar
Dwyer, G. S., Cronin, T. M., and Baker, P. A. 2002. Trace elements in marine ostracodes, pp. 205225 In Holmes, J. A. and Chivas, A. R. (eds.) The Ostracoda: Applications in Quaternary Research, Geophysical Monograph Series, 131: American Geophysical Union: Washington, D. C. Google Scholar
Eisenhauer, G. B. 1999. Ostracods as palaeosalinity indicators. , Kingston University, 394 p.Google Scholar
Elderfield, H., and Ganssen, G. 2000. Past temperature and δ18O of surface ocean waters inferred from foraminiferal Mg/Ca ratios. Nature, 405: 442445.Google Scholar
Engstrom, D. R. and Nelson, S. 1991. Paleosalinity from trace metals in fossil ostracodes compared with observational records at Devils Lake, N. Dakota. Palaeogeography, Palaeoclimatology, Palaeoecology, 83: 295312.Google Scholar
Eugster, H. P. and Jones, B. F. 1979. Behavior of major solutes during closed-basin brine evolution. American Journal of Science, 279: 609631.Google Scholar
Ferguson, E. 1945. Studies on the seasonal life history of three species of freshwater ostracoda. American Midland Naturalist, 32:713727.Google Scholar
Forester, R. M. 1987. Late Quaternary paleoclimate records from lacustrine ostracodes, pp. 261276 In Ruddiman, W. F., and Wright, H. E. (eds.) North America and adjacent oceans during the last deglaciation, Geological Society of America Geology of North America, K-3.Google Scholar
Friedman, G. M., and Lundin, R. F. 2001. Ostracodes as indicators of brackish water environments in the Catskill Magnafacies (Devonian) of New York State: discussion. Palaeogeography, Palaeoclimatology, Palaeoecology, 171: 7379.Google Scholar
Ghetti, P., Anadón, P., Bertini, A., Esu, D., Gliozzi, E., Rook, L., and Soulié-Marsche, I. 2002. The Early Messinian Velona basin (Siena, central Italy): paleoenvironmental and paleobiogeographical reconstructions. Palaeogeography Palaeoclimatology Palaeoecology, 187: 133.Google Scholar
Griffiths, H. I. 1995. The application of freshwater ostracods to the study of late Quaternary palaeoenvironments in northwestern Europe. , University of Wales. 449 p.Google Scholar
Griffiths, H. I., and Horne, D. J. 1998. Fossil distribution of reproductive modes in nonmarine ostracods, pp.101–118. In Martens, K. (ed.) Sex and Parthenogenesis. Evolutionary Ecology of Reproductive Modes in Non-Marine Ostracods. Backhuys Publishers: Leiden.Google Scholar
Griffiths, H. I., and Holmes, J.A. 2000. Nonmarine Ostracods and Quaternary Palaeoenvironments, Quaternary Research Association, Technical Guide, 8: 179 p.Google Scholar
Hanai, T., Ikeya, T. T., and Ishizaki, K. (eds.) 1988. Evolutionary Biology of Ostracoda: its fundamentals and applications. Kodansha Ltd: Tokyo. 1356 p.Google Scholar
Hartmann, G. (ed.) 1976. Evolution of post-Paleozoic Ostracoda. Abhandlungen und Verhandlungen des Naturwissenschaftlichen Vereins in Hamburg (Neue Folge), 18/19 (S): 1336.Google Scholar
Hodell, D. A., Curtis, J. H., Jones, G. A., Higuera-Grundy, A., Brenner, M., Binford, M. W., and Dorsey, K. T. 1991. Reconstruction of Caribbean climate change over the past 10,500 years. Nature, 352: 790793.Google Scholar
Holmes, J. A. 1992. Micropalaeontology notebook. Trace-element chemistry of nonmarine ostracod shells: a preliminary evaluation of cleaning methods. Journal of Micropalaeontology, 11:36.Google Scholar
Holmes, J. A. 1996. Trace-element and stable-isotope geochemistry of nonmarine ostracod shells in Quaternary palaeoenvironmental reconstruction. Journal of Paleolimnology, 15: 223235.Google Scholar
Holmes, J.A., Street-Perrott, F.A., Allen, M., Fothergill, P., Harkness, D., Kroon, D., and Perrott, R. A. 1997. Holocene palaeolimnology of Kajemarum Oasis, northern Nigeria: an isotopic study of ostracodes, authigenic carbonate and organic carbon, Journal of the Geological Society of London, 154: 311319.Google Scholar
Holmes, J. A. 1998a. A late Quaternary ostracod record from Wallywash great pond, a Jamaican marl lake. Journal of Paleolimnology, 19: 115128.Google Scholar
Holmes, J. A. 1998b. The palaeoenvironmental significance of iron and manganese in nonmarine ostracod shells: a preliminary analysis, pp. 198212 In Holmes, J. A. and Lynch, K. (eds.) The Kingston Papers, a Geographical Perspective on the Environment, Economy and Society, School of Geography, Kingston University: Kingston upon Thames.Google Scholar
Holmes, J. A. and Horne, D. J. (eds.) 1999. Nonmarine Ostracoda: evolution and environment, Palaeogeography, Palaeoclimatology, Palaeoecology, 148: 1185, 1999.Google Scholar
Holmes, J. A., and Chivas, A. R. (eds.) 2002a. The Ostracoda: Applications in Quaternary Research. Geophysical Monograph Series, 131: American Geophysical Union: Washington, D. C. 313 p.Google Scholar
Holmes, J. A. and Chivas, A. R. 2002b. Ostracod shell chemistry - overview, pp. 185204 In Holmes, J. A. and Chivas, A. R. (eds.) The Ostracoda: Applications in Quaternary Research, Geophysical Monograph Series, 131: American Geophysical Union: Washington, D. C. Google Scholar
Horne, D. J. 1983. Life-cycles of Podocopid Ostracoda – a review with particular reference to marine and brackish-water species, pp. 581590 In Maddocks, R. F. (ed.) Applications of Ostracoda, University of Houston (Department of Geosciences): Houston.Google Scholar
Horne, D.J., Baltanás, A., and Paris, G., 1998. Geographical distribution of reproductive modes in living nonmarine ostracods, pp. 7799 In Martens, K., (ed.) Sex and Parthenogenesis. Evolutionary Ecology of Reproductive Modes in Non-Marine Ostracods. Backhuys Publishers: Leiden.Google Scholar
Horne, D. J. and Martens, K. (eds.) 2000. Evolutionary Biology and Ecology of Ostracoda, Hydrobiologia, 419: 196 p.Google Scholar
Horne, D. J. 2002. Ostracod biostratigraphy and palaeoecology of the Purbeck limestone group in Southern England. Special Papers in Palaeontology, 68: 5370.Google Scholar
Horne, D.J., Cohen, A. C., and Martens, K., 2002. Taxonomy, morphology and biology of Quaternary and living Ostracoda, pp. 536 In Holmes, J. A. and Chivas, A. R. (eds.) The Ostracoda: Applications in Quaternary Research, Geophysical Monograph Series, 131: American Geophysical Union: Washington, D. C. Google Scholar
Hull, S. L., and Rollinson, D. 2000. Clonal diversity and rockpool size in the marine ostracod, Callistocythere badia . Journal of the Marine Biological Association of the United Kingdom, 80: 551552.Google Scholar
Kaufman, D.S. 2000. Amino acid racemization in ostracodes, pp. 145160 In Goodfriend, G. A., Collins, M.J., Fogel, M.L., Macko, S.A., and Wehmiller, J.F., (eds.) Perspectives in Amino Acid and Protein Geochemistry, Oxford University Press: New York, 2000.Google Scholar
Keatings, K. W., Ito, E., Engstrom, D. R. E., Yu, Z. C., Heaton, T. H. E., and Haskell, B. 1999. An investigation into the effect on ostracod shell chemistry of some chemical and physical cleaning methods. Eos, 80 (17): S176.Google Scholar
Keatings, K.W., 1999. The basis for ostracod shell chemistry in palaeoclimate reconstruction. , Kingston University, 241 p.Google Scholar
Keatings, K. W., Heaton, T. H. E., and Holmes, J. A. 2002. Carbon and oxygen isotope fractionation in nonmarine ostracods: results from a ‘natural culture’ environment. Geochmica et Cosmochimica Acta, 66: 17011711.Google Scholar
Keen, M. C. (ed.) 1996. Proceedings of the 2nd European Ostracodologists Meeting. British Micropalaeontological Society: London, 214 p.Google Scholar
Kilenyi, T.I. 1972. Transient and balanced genetic polymorphism as an explanation of variable noding in the ostracode Cyprideis torosa . Micropaleontology, 18: 4763.Google Scholar
Knox, L. W., and Gordon, E. A. 1999. Ostracodes as indicators of brackish water environments in the Catskill Magnafacies (Devonian) of New York State. Palaeogeography, Palaeoclimatology, Palaeoecology, 148: 922.Google Scholar
Knox, L. W. 2001. Ostracodes as indicators of brackish water environments in the Catskill Magnafacies (Devonian) of New York State: reply. Palaeogeography, Palaeoclimatology, Palaeoecology, 171: 8183.Google Scholar
Krsti, N. (ed.) 1979. Proceedings of the VII International Symposium on Ostracodes - taxonomy, biostratigraphy and distribution of ostracodes, Geological Society of Serbia: Belgrade, 272 p.Google Scholar
Löffler, H., and Danielopol, D. (eds.) 1977. Aspects of the Ecology and Zoogeography of Recent and Fossil Ostracoda, Dr. W. Junk: The Hague, 521 p.Google Scholar
Lorens, R. B., Williams, D. F. and Bender, M. L., 1977. The early nonstructural chemical diagenesis of foraminiferal calcite. Journal of Sedimentary Petrology. 47: 16021609.Google Scholar
Maddocks, R. F. (ed.) 1983. Applications of Ostracoda, University of Houston (Department of Geosciences): Houston, 677 p.Google Scholar
Malz, H. (ed.) 1989. Contributions, European Ostracodologists' Meeting Volume I, Courier Forschungsinstitut Senckenberg, Band 113: 255 p.Google Scholar
Malz, H. (ed.) 1990. Contributions, European Ostracodologists' Meeting. Vol. 2, Courier Forschungsinstitut Senckenberg, Band 123: 333 p.Google Scholar
Martens, K., De Deckker, P., and Marples, T. G. 1985. Life history of Mytilocypris henricae (Chapman) (Crustacea, Ostracoda) in Lake Bathurst, New South Wales. Australian Journal of Marine and Freshwater Research, 36: 807819.Google Scholar
Martens, K. 1990. Revision of African Limnocythere s.s. brady, 1867 (Crustacea, Ostracoda), with special reference to the Rift Valley Lakes; morphology, taxonomy, evolution and (palaeo-) ecology. Archive für Hydrobiologie, 83 (Suppl.): 453524.Google Scholar
Martens, K. 1994. Summary of the morphology, taxonomy and distribution of Limnocythere inopinata (Baird, 1843) (Ostracoda, Limnocytheridae), pp. 1722 In Horne, D. J., and Martens, K. (eds.) The evolutionary ecology of reproductive modes in nonmarine Ostracoda, The University of Greenwich Press: Greenwich.Google Scholar
Martens, K., Horne, D. J., and Griffiths, H. I. 1998. Age and diversity of nonmarine ostracods, pp. 3755 In Martens, K. (ed.) Sex and Parthenogenesis: Evolutionary Ecology of Reproductive Modes in Nonmarine Ostracods. Backhuys Publishers: Leiden.Google Scholar
Mccoy, W.D. 1988. Amino acid racemization in fossil nonmarine ostracod shells: A potential tool for the study of Quaternary stratigraphy, chronology, and palaeotemperature, pp. 219229 In De Deckker, P., Colin, J.-P., and Peypouquet, J.-P. (eds.) Ostracoda in the Earth Sciences. Elsevier: Amsterdam.Google Scholar
Mcculloch, M. T., and De Deckker, P. 1989. Sr isotope constraints on the Mediterranean environment at the end of the Messinian salinity crisis. Nature, 342: 6265.Google Scholar
Mcculloch, M.T., De Deckker, P., and Chivas, A.R. 1989. Strontium isotope variations in single ostracod valves from the Gulf of Carpentaria, Australia: A palaeoenvironmental indicator. Geochimica et Cosmochimica Acta, 53: 17031710.Google Scholar
Mckenzie, K. G. 1971. Entomostraca of Aldabra, with special reference to the genus Heterocypris (Crustacea, Ostracoda). Philosophical Transactions of the Royal Society, 260B: 257297.Google Scholar
Mckenzie, K. G. and Jones, P.J. 1993. (eds.) Ostracoda in the Earth and Life Sciences. A. A. Balkema: Rotterdam. 724 p.Google Scholar
Meisch, C. 2000. Freshwater Ostracoda of Western and Central Europe. SüSzwasserfauna von Mitteleuropa 8/3: Spektrum Akademischer Verlag: Heidelberg, 522 p.Google Scholar
Meñoz, R. 1997. The respone of ostracod assemblges to recent pollution and sedimentary processes in the Huelva Estaury, SW Spain. Science of the Total Environment, 207: 91103.CrossRefGoogle Scholar
Mezquita, F., Sanz-Brau, A., and Wansard, G. 2000a. Habitat preferences and population dynamics of Ostracoda in a helocrene spring system. Canadian Journal of Zoology, 78: 840847.Google Scholar
Mezquita, F., Olmos, V., and Oltra, R. 2000b. Population ecology of Cyprideis torosa (Jones, 1850) in a hypersaline environment of the Western Mediterranean (Santa Pola, Alacant) (Crustacea : Ostracoda). Ophelia, 53: 119130.Google Scholar
Mostafawi, N. 2001. How severely was the Persian Gulf affected by oil spills following the 1991 Gulf War? Environmental Geology, 40: 11851191.Google Scholar
Mourguiart, P. and Monetengro, M. E. 2002. Climate changes in the Lake Titicaca area: evidence from ostracod ecology, pp. 151166 In Holmes, J. A. and Chivas, A. R. (eds.) The Ostracoda: Applications in Quaternary Research, Geophysical Monograph Series, 131: American Geophysical Union: Washington, D.C. Google Scholar
Nazik, A. (ed.) 1999. Studies on Ostracoda. Proceedings of the 4th European Ostracodologists' Meeting, Geosound, Special issue, 35: 201 p.Google Scholar
Neale, J. W. (ed.) 1969. The Taxonomy, Morphology and Ecology of Recent Ostracoda. Oliver and Boyd: Edinburgh. 538 p.Google Scholar
Oertli, H. J. (ed.) 1971. Colloque sur la Paléoécologie des ostracodes, Pau 1970, Bulletin du Centre de Recherches Pau -SNPA, 5 (Supplement): 953 p.Google Scholar
Oertli, H.J., 1985. Atlas des ostracodes de France. Bulletin Centre Recherches, Exploration-Production Elf-Aquitaine, Memoire 9: 396 p.Google Scholar
O'Hara, S.L., Street-Perrott, F.A. and Burt, T.P. 1993. Accelerated soil erosion around a Mexican highland lake caused by prehispanic agriculture. Nature, 362: 4851.Google Scholar
Onder Iaková, V. 1993. Herpetocypris chevreuxi G.O. Sars, 1896 (Crustacea, Ostracoda) - un éhminateur important de la pollution organique des eaux usées. Bulletin Société Naturelistes Luxembourgeois, 94: 233240.Google Scholar
Palacios-Fest, M.R., and Dettman, D.L. 2001. Temperature controls monthly variation in Ostracode valve Mg/Ca: Cypridopsis vidua from a small lake in Sonora, Mexico. Geochimica et Cosmochimica Acta, 65: 24992507.Google Scholar
Palacios-Fest, M., and Park, L.E. 2003. Química de conchas de ostrácodos: una alternativa para medir la contaminación por metales de sistemas acuáticos. Revista Mexicana de Ciencias Geológicas.Google Scholar
Park, L. E., Cohen, A. S., Martens, K., and Bralek, R. In press. The impact of taphonomic processes on interpreting paleoecological changes in large lake ecosystems: ostracodes in Lakes Tanganyika and Malawi. Journal of Paleolimnology.Google Scholar
Peypouquet, J.P. 1975. Les variations des caracteres morphologiques internes chez les ostracodes des genres Krithe et Parakrithe: relation possible avec le teneur en O2 dissous dans l'eau. Bulletin de l'institut de Géologie du Bassin d'Aquitaine, 17: 8188.Google Scholar
Puri, H. S. (ed.) 1965. Ostracods as Ecological and Palaeoecological Indicators, Publicazione della Stazione Zoologica di Napoli, 33 (S): 612 p.Google Scholar
Ricketts, R.D., Johnson, T. C., Brown, E.T., Rasmussen, K. A., and Romanovsky, V. V. 2001. The Holocene paleolimnology of Lake Issyk-Kul, Kyrgyzstan: trace element and stable isotope composition of ostracodes, Palaeogeography, Palaeoclimatology, Palaeoecology, 176: 207227.Google Scholar
R Iaha, J. (ed.) 1995. Ostracoda and Biostratigraphy, A. A. Balkema: Rotterdam, 454 p.Google Scholar
Rosenfeld, A. and Ortal, R. 1983. Ostracodes as indicators of water pollution in Nahal Harod, Northern Israel, pp. 229237 In Maddocks, R. F. (ed.) Applications of Ostracoda, University of Houston (Department of Geosciences): Houston.Google Scholar
Rosenthal, Y., and Boyle, E. A. 1993. Factors controlling the fluoride content of planktonic foraminifera - an evaluation of its paleoceanographic applicability. Geochimica et Cosmochimica Acta, 57: 335346.Google Scholar
Rosenthal, Y., Lohmann, G. P., Lohmann, K. C., Sherrell, R. M. 2000. Incorporation and preservation of Mg in Globigerinoides sacculifer: Implications for reconstructing the temperature and 18O/16O of seawater. Paleoceanography, 15: 135145.Google Scholar
Ruiz, F., Gonzalez-Regalado, M.L., Baceta, J. I. and Muñoz, J. M., 2000. Comparative ecological analysis of the ostracod faunas from low- and high-polluted southwestern Spanish estuaries: a multivariate approach. Marine Micropaleontology, 40: 345376.Google Scholar
Schudack, M. E. 1999. Ostracoda (marine/nonmarine) and palaeoclimate history in the Upper Jurassic of Central Europe and North America. Marine Micropaleontology 37: 273288.Google Scholar
Smith, A. J. 1993. Lacustrine ostracodes as hydrochemical indicators in lakes of the northcentral United States. Journal of Paleolimnology, 8, 121134.Google Scholar
Smith, A. J., Donovan, J.J., Ito, E., and Engstrom, D. R. 1997. Groundwater processes controlling a prairie lake's response to middle Holocene drought. Geology, 25: 391394.Google Scholar
Smith, A.J., and Horne, D. J. 2002. Ecology of marine, marginal marine and nonmarine ostracods, pp. 3764 In Holmes, J. A. and Chivas, A. R. (eds.) The Ostracoda: Applications in Quaternary Research, Geophysical Monograph Series, 131: American Geophysical Union: Washington, D. C. CrossRefGoogle Scholar
Swain, F. M., Kornicker, L.S., and Lundin, R.F. (eds.) 1975. Biology and Paleobiology of Ostracoda. Bulletins of American Paleontology, 65: 687 p.Google Scholar
Turpen, J. B., and Angell, R. W. 1971. Aspects of molting and calcification in the ostracode Heterocypris . Biological Bulletin of the Marine Biology Laboratory, Woods Hole, Massachusetts. 140: 331338.Google Scholar
Van Harten, D. 2000. Variable noding in Cyprideis torosa (Crustacea, Ostracoda): an overview, experimental results and a model catastrophe theory. Hydrobiologia, 419: 131139.Google Scholar
Vengosh, A., Kolodny, Y., Starinsky, A., Chivas, A.R., and Mcculloch, M.T. 1991. Coprecipitation and isotopic fractionation of boron in modern biogenic carbonates, Geochimica et Cosmochimica Acta, 55: 29012910.Google Scholar
Von Grafenstein, U., Erlenkeuser, H., Müller, J., and Kleinmann-Eisenmann, A. 1992. Oxygen isotope records of benthic ostracods in Bavarian lake sediments. Naturwissenschaften, 79: 145152.Google Scholar
Von Grafenstein, U., Erlernkeuser, H., and Trimborn, P. 1999a. Oxygen and carbon isotopes in modern freshwater ostracod valves: assessing vital offsets and autecological effects of interest for palaeoclimate studies. Palaeogeography, Palaeoclimatology, Palaeoecology, 148: 133152.CrossRefGoogle Scholar
Von Grafenstein, U., Erlenkeuser, H., Brauer, A., Jouzel, J., and Johnsen, S.J. 1999b. A mid-European decadal isotope-climate record from 15,500 to 5000 years BP. Science, 284: 16541657.Google Scholar
Von Grafenstein, U. 2002. Oxygen isotope studies of ostracods from deep lakes, pp. 249266 In Holmes, J. A. and Chivas, A. R. (eds.) The Ostracoda: Applications in Quaternary Research, Geophysical Monograph Series, 131: American Geophysical Union: Washington, D. C. Google Scholar
Wansard, G. 1996. Quantification of paleotemperature changes during isotopic stage 2 in the La Draga continental sequence (NE Spain) based on the Mg/Ca ratio of freshwater ostracods, Quaternary Science Reviews, 15: 237245.Google Scholar
Wansard, G., De Deckker, P., and Julià, R. 1998. Variability in ostracod partition coefficients D(Sr) and D(Mg). Implications for lacustrine palaeoenvironmental reconstructions. Chemical Geology, 146: 3954.Google Scholar
Wansard, G., and Mezquita, F. 2001. The response of ostracod shell chemistry to seasonal change in a Mediterranean freshwater spring environment. Journal of Paleolimnology, 25: 916.Google Scholar
Whatley, R. 1983. The application of Ostracoda to palaeoenvironmental analysis, pp. 5177 In Maddocks, R. F. (ed.) Applications of Ostracoda, University of Houston (Department of Geosciences): Houston.Google Scholar
Whatley, R. C. 1988. Population structure of ostracods: some general principles for the recogntion of palaeoenvironments, pp. 245256 In De Deckker, P., Colin, J. P., and Peypouquet, J. P. (eds.) Ostracoda in the Earth Sciences. Elsevier: Amsterdam.Google Scholar
Whatley, R. W. and Maybury, C. (eds.) 1990. Ostracoda and Global Events, Chapman and Hall for the British Micropalaeontological Society: London. 621 p.Google Scholar
Xia, J., Ito, E., and Engstrom, D. R. 1997a. Geochemistry of ostracode calcite: Part 1. An experimental determination of oxygen isotope fractionation. Geochimica et Cosmochimica Acta, 61: 377382.Google Scholar
Xia, J., Engstrom, D. R., and Ito, E. 1997b. Geochemistry of ostracode calcite: Part 2. The effects of lake-water chemistry and seasonal temperature variation on Candona rawsoni . Geochimica et Cosmochimica Acta, 61: 383391.Google Scholar