Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-27T15:19:06.695Z Has data issue: false hasContentIssue false

Conodonts and the Paleoclimatological and Paleoecological Applications of Phosphate Δ18O Measurements

Published online by Cambridge University Press:  21 July 2017

Kenneth G. MacLeod*
Affiliation:
Department of Geological Sciences, University of Missouri, Columbia, MO 65211 USA. MacLeodK@missouri.edu
Get access

Abstract

Oxygen isotopic analysis of the phosphate in bioapatite has become a standard paleoclimatological tool with results documented in a rapidly expanding literature. Phosphate-based measurements are particularly important for samples where carbonates preservation is suspect (as is the case for many Paleozoic sites). Important analytical and observational advances that have fueled the expansion of phosphate-based studies include: 1) Oxygen isotopic ratios of biogenic apatite can be measured on small enough samples (≥ ~300 μg), quickly enough, cheaply enough, and accurately enough to permit meaningful high resolution paleoclimatic studies of trends through time, along spatial transects, and/or among taxa, 2) biogenic apatite is precipitated in approximate equilibrium with ambient waters and thus records the interplay of temperature and the isotopic composition of the water in which a sample grew, 3) tooth enamel and conodont crown material are quite resistant to diagenetic alteration and are preferred targets for both paleotemperature and paleoecological studies, 4) Paleozoic conodont δ18O records seem to provide robust paleotemperature information on time scales ranging from thousands of years to 100's of millions of years, and generation of increasingly refined paleotemperature records from this diagenetically resistant phase is likely to continue to be a useful field of study, 5) paleoenvironmental variations in δ18O values of seawater have been documented (e.g., differences between glacial and interglacial oceans), but whether and by how much the δ18O value of the hydrosphere may have increased since the Cambrian remains unresolved, and 6) differences in δ18O values among conodont taxa are increasingly well documented and, coupled with the potential to study growth series using ion microprobe techniques, are providing novel perspectives on and important tests of conodont paleoecology.

Type
Research Article
Copyright
Copyright © 2012 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Affek, H. 2012. Clumped isotope paleothermometry: Principles, applications, and challenges. In Ivany, L. C., and Huber, B. T. (eds.). Reconstructing Earth's Deep-Time Climate—The State of the Art in 2012, Paleontological Society Papers v. 18. The Paleontological Society, Colorado.Google Scholar
Amiot, R., Lécuyer, C., Buffetaut, E., Fluteau, F., Legendre, S., and Martineau, F. 2004. Latitudinal temperature gradient during the Cretaceous Upper Campanian–Middle Maastrichtian: δ18O record of continental vertebrates. Earth and Planetary Science Letters, 226:255272.CrossRefGoogle Scholar
Barham, M., Joachimski, M. M., Murray, J., and Williams, D. M. 2012. Diagenetic alteration of the structure and δ18O signature of Palaeozoic fish and conodont apatite: Potential use for corrected isotope signatures in palaeoenvironmental interpretation. Chemical Geology, 298–299:1119.Google Scholar
Barrick, R. E., and Showers, W. J. 1994. Thermophysiology of Tyrannosaurus rex; evidence from oxygen isotopes. Science, 265:222224.Google Scholar
Bassett, D., Macleod, K. G., and Ethington, R. 2008. Homogeneous seawater temperatures across the Early Ordovician Laurentian carbonate platform. GSA Abstracts with Programs, 40:264.Google Scholar
Bassett, D., Macleod, K. G., Miller, J. F., and Ethington, R. L. 2007. Oxygen isotopic composition of biogenic phosphate and the temperature of Early Ordovician seawater. Palaios, 22:98103.Google Scholar
Brand, U., and Veizer, J. 1980. Chemical diagenesis of a multicomponent carbonate system: 1. Trace elements. Journal of Sedimentary Petrology, 50:12191236.Google Scholar
Buggisch, W., Joachimski, M. M., Lehnert, O., Bergström, S. M., Repetski, J. E., and Webers, G. F. 2010. Did intense volcanism trigger the first Late Ordovician icehouse? Geology, 38:327330.Google Scholar
Buick, D. P., and Ivany, L. C. 2004. 100 years in the dark: Extreme longevity of Eocene bivalves from Antarctica. Geology, 32:921924.CrossRefGoogle Scholar
Cerling, T. E., and Sharp, Z. D. 1996. Stable carbon and oxygen isotope analysis of fossil tooth enamel using laser ablation. Palaeogeography, Palaeoclimatology, Palaeoecology, 126:173186.Google Scholar
Chenery, C. A., Evans, J. A., Score, D., Boyle, A., and Chenery, S. R. 2012. A boat load of Vikings? Journal of the North Atlantic:in press.Google Scholar
Cramer, B. S., Toggweiler, J. R., Wright, J. D., Katz, M. E., and Miller, K. G. 2009. Ocean overturning since the Late Cretaceous: Inferences from a new benthic foraminiferal isotope compilation. Paleoceanography, 24:PA4216.Google Scholar
Crowson, R. A., Showers, W. J., Wright, E. K., and Hoering, T. C. 1991. Preparation of phosphate samples for oxygen isotope analysis. Analytical Chemistry, 63:23972400.CrossRefGoogle Scholar
Donoghue, P. C. J. 1998. Growth and patterning in the conodont skeleton. Philosophical Transactions of the Royal Society B: Biological Sciences, 353:633666.Google Scholar
Elderfield, H., and Pagett, R. 1986. Rare earth elements in ichthyoliths: Variations with redox conditions and depositional environments. Science of the Total Environment, 49:175197.Google Scholar
Elliott, J. C. 2002. Calcium phosphate biominerals. Reviews in Mineralogy and Geochemistry, 48:427453.Google Scholar
Elrick, M., Berkyová, S., Klapper, G., Sharp, Z., Joachimski, M., and Fryda, J. 2009. Stratigraphic and oxygen isotope evidence for My-scale glaciation driving eustasy in the Early-Middle Devonian greenhouse world. Palaeogeography, Palaeoclimatology, Palaeoecology, 276:170181.Google Scholar
Elrick, M., and Scott, L. A. 2010. Carbon and oxygen isotope evidence for high-frequency (104— 105 yr) and My-scale glacio-eustasy in Middle Pennsylvanian cyclic carbonates (Gray Mesa Formation), central New Mexico. Palaeogeography, Palaeoclimatology, Palaeoecology, 285:307320.Google Scholar
Finnegan, S., Bergmann, K., Eiler, J. M., Jones, D. S., Fike, D. A., Eisenman, I., Hughes, N. C., Tripati, A. K., and Fischer, W. W. 2011. The magnitude and duration of Late Ordovician–early Silurian glaciation. Science, 331:903906.Google Scholar
Fricke, H. C., Clyde, W. C., and O'Neil, J. R. 1998. Intra-tooth variations in δ18O (PO4) of mammalian tooth enamel as a record of seasonal variations in continental climate variables. Geochimica et Cosmochimica Acta, 62:18391850.Google Scholar
Fricke, H. C., and Rogers, R. R. 2000. Multiple taxon-multiple locality approach to providing oxygen isotope evidence for warm-blooded theropod dinosaurs. Geology, 28:799802.Google Scholar
Friedrich, O., Norris, R. D., and Erbacher, J. 2012. Evolution of middle to Late Cretaceous oceans—a 55 m.y. Record of Earth's temperature and carbon cycle. Geology, 40:107110.Google Scholar
Grandjean, P., and Albarède, F. 1989. Ion probe measurements of rare earth elements in biogenic phosphates. Geochimica et Cosmochimica Acta, 53:31793183.Google Scholar
Grossman, E. 2012. Applying oxygen isotope paleothermometry in deep time. In Ivany, L. C., and Huber, B. T. (eds.). Reconstructing Earth's Deep-Time Climate—The State of the Art in 2012, Paleontological Society Papers v. 18. The Paleontological Society, Colorado.Google Scholar
Halas, S., Skrzypek, G., Meieraugenstein, W., Pelc, A., and Kemp, H. F. 2011. Inter-laboratory calibration of new silver orthophosphate comparison materials for the stable oxygen isotope analysis of phosphates. Rapid Communications in Mass Spectrometry, 25:579584.Google Scholar
Herrmann, A. D., Macleod, K. G., and Leslie, S. A. 2010. Did a volcanic mega-eruption cause global cooling during the Late Ordovician? Palaios, 25:831836.Google Scholar
Huber, B. T., Norris, R. D., and Macleod, K. G. 2002. Deep-sea paleotemperature record of extreme warmth during the Cretaceous. Geology, 30:123126.Google Scholar
Huber, M. 2012. Progress in greenhouse climate modeling. In Ivany, L. C., and Huber, B. T. (eds.). Reconstructing Earth's Deep-Time Climate—The State of the Art in 2012, Paleontological Society Papers v. 18. The Paleontological Society, Colorado.Google Scholar
Ivany, L. C. 2012. Reconstructing paleoseasonality from accretionary skeletal carbonates – Challenges and opportunities. In Ivany, L. C., and Huber, B. T. (eds.). Reconstructing Earth's Deep-Time Climate—The State of the Art in 2012, Paleontological Society Papers v. 18. The Paleontological Society, Colorado.Google Scholar
Ivany, L. C., Patterson, W. P., and Lohmann, K. C. 2000. Cooler winters as a possible cause of mass extinctions at the Eocene/Oligocene boundary. Nature, 407:887890.Google Scholar
Jeppsson, L. 2005. Biases in the recovery and interpretation of micropalaeontological data. Special Papers in Palaeontology, 73:5771.Google Scholar
Jiménez Berrocoso, Á., Macleod, K. G., Calvert, S. E., and Elorza, J. 2008. Bottom water anoxia, inoceramid colonization, and benthopelagic coupling during black shale deposition on Demerara Rise (Late Cretaceous western tropical North Atlantic). Paleoceanography, PA3212. doi:10.1029/2007PA001545.Google Scholar
Joachimski, M. M., Breisig, S., Buggisch, W., Talent, J. A., Mawson, R., Gereke, M., Morrow, J. R., Day, J., and Weddige, K. 2009. Devonian climate and reef evolution: Insights from oxygen isotopes in apatite. Earth and Planetary Science Letters, 284:599609.Google Scholar
Joachimski, M. M., and Buggisch, W. 2002. Conodont apatite δ18O signatures indicate climatic cooling as a trigger of the Late Devonian mass extinction. Geology Boulder, 30:711714.2.0.CO;2>CrossRefGoogle Scholar
Joachimski, M. M., Lai, X., Shen, S., Jiang, H., Luo, G., Chen, B., Chen, J., and Sun, Y. 2012. Climate warming in the latest Permian and the Permian–Triassic mass extinction. Geology, 40:195198.Google Scholar
Joachimski, M. M., Van Geldern, R., Breisig, S., Buggisch, W., and Day, J. 2004. Oxygen isotope evolution of biogenic calcite and apatite during the Middle and Late Devonian. International Journal of Earth Sciences, 93:542553.Google Scholar
Joachimski, M. M., Von Bitter, P. H., and Buggisch, W. 2006. Constraints on Pennsylvanian glacioeustatic sea-level changes using oxygen isotopes on conodont apatite. Geology, 34:277280.Google Scholar
Jones, D. S. 1983. Sclerochronology: reading the record of the molluscan shell. American Scientist, 71:384391.Google Scholar
Kohn, M. J., and Cerling, T. E. 2002. Stable isotope compositions of biological apatite. Reviews in Mineralogy and Geochemistry, 48:455488.CrossRefGoogle Scholar
Kohn, M. J., Miselis, J. L., and Fremd, T. J. 2002. Oxygen isotope evidence for progressive uplift of the Cascade Range, Oregon. Earth and Planetary Science Letters, 204:151165.Google Scholar
Kolodny, Y., Luz, B., and Navon, O. 1983. Oxygen isotope variations in phosphate of biogenic apatites; I, Fish bone apatite; rechecking the rules of the game. Earth and Planetary Science Letters, 64:398.Google Scholar
Kornexl, B. E., Gehre, M., H√∂Fling, R., and Werner, R. A. 1999. On-line δ18O measurement of organic and inorganic substances. Rapid Communications in Mass Spectrometry, 13:16851693.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Laporte, D. F., Holmden, C., Patterson, W. P., Prokopiuk, T., and Eglington, B. M. 2009. Oxygen isotope analysis of phosphate: improved precision using TC/EA CF-IRMS. Journal of Mass Spectrometery, 44:879890.Google Scholar
Lécuyer, C., Grandjean, P., O'Neil, J. R., Cappetta, H., and Martineau, F. 1993. Thermal excursions in the ocean at the Cretaceous-Tertiary boundary (northern Morocco): δ18O record of phosphatic fish debris. Palaeogeography, Palaeoclimatology, Palaeoecology, 105:235.Google Scholar
Leslie, S. A. 2009. Relationships between Upper Ordovician (Mohawkian) lithofacies and conodont biofacies distribution patterns using K-bentonite beds as timeplanes, eastern North America and northwestern Europe. Palaeontographica Americana, 62:2340.Google Scholar
Longinelli, A. 1965. Oxygen isotopic composition of orthophosphate from shells of living marine organisms. Nature, 207:716719.Google Scholar
Longinelli, A. 1966. Ratios of oxygen-18:oxygen-16 in phosphate and carbonate from living and fossil marine organisms. Nature, 211:923927.Google Scholar
Longinelli, A., and Nuti, S. 1973. Revised phosphate-water isotopic temperature scale. Earth and Planetary Science Letters, 19:373376.Google Scholar
Lowenstein, T. and Hönisch, B. 2012. Use of Mg/Ca ratios as a seawater temperature proxy. In Ivany, L. C., and Huber, B. T. (eds.). Reconstructing Earth's Deep-Time Climate—The State of the Art in 2012, Paleontological Society Papers v. 18. The Paleontological Society, Colorado.Google Scholar
Luz, B., Kolodny, Y., and Kovach, J. 1984. Oxygen isotope variations in phosphate of biogenic apatites, III. Conodonts. Earth and Planetary Science Letters, 69:255262.Google Scholar
Macleod, K. G., and Irving, A. J. 1996. Correlation of cerium anomalies with indicators of paleoenvironment. Journal of Sedimentary Research, 66:948955.Google Scholar
Mii, H. S., Grossman, E. L., Yancey, T. E., Chuvashov, B., and Egorov, A. 2001. Isotopic records of brachiopod shells from the Russian Platform—evidence for the onset of mid-Carboniferous glaciation. Chemical Geology, 175:133147.Google Scholar
O'Neil, J. R., Roe, L. J., Reinhard, E., and Blake, R. E. 1994. A rapid and precise method of oxygen isotope analysis of biogenic phosphate. Israel Journal of Earth-Sciences, 43:203.Google Scholar
O'Neil, J. R., Vennemann, T. W., and Mckenzie, W. F. 2003. Effects of speciation on equilibrium fractionations and rates of oxygen isotope echange between (PO4)aq and H2O. Geochimica et Cosmochimica Acta, 67:31353144.Google Scholar
Passey, B. 2012. Reconstructing terrestrial environments using stable isotopes in fossil teeth and paleosol carbonates. In Ivany, L. C., and Huber, B. T. (eds.). Reconstructing Earth's Deep-Time Climate—The State of the Art in 2012, Paleontological Society Papers v. 18. The Paleontological Society, Colorado.Google Scholar
Patterson, W. P., Dietrich, K. A., Holmden, C., and Andrews, J. T. 2010. Two millennia of North Atlantic seasonality and implications for Norse colonies. Proceedings of the National Academy of Sciences of the United States of America, 107:53065310.Google Scholar
Pearson, P. 2012. Oxygen isotopes in foraminifera: Overview and historical review. In Ivany, L. C., and Huber, B. T. (eds.). Reconstructing Earth's Deep-Time Climate—The State of the Art in 2012, Paleontological Society Papers v. 18. The Paleontological Society, Colorado.Google Scholar
Pucéat, E., Joachimski, M. M., Bouilloux, A., Monna, F., Bonin, A., Motreuil, S., Moriniére, P., Hénard, S., Mourin, J., Dera, G., and Quesne, D. 2010. Revised phosphate-water fractionation equation reassessing paleotemperatures derived from biogenic apatite. Earth and Planetary Science Letters, 298:135142.Google Scholar
Pucéat, E., Lécuyer, C., Donnadieu, Y., Naveau, P., Cappetta, H., Ramstein, G., Huber, B. T., and Kriwet, J.J. 2007. Fish tooth δ18O revising Late Cretaceous meridional upper ocean water temperature gradients: Geology, 35:107110 doi:10.1130/G23103A.1.Google Scholar
Purnell, M. A., and Donoghue, P. C. J. 1997. Architecture and functional morphology of the skeletal apparatus of ozarkodinid conodonts. Philosophical Transactions of the Royal Society B: Biological Sciences, 352:15451564.Google Scholar
Quinton, P. C. 2012. Oxygen isotopes from conodonts of the mid-continent, US: Implications for Late Ordovician climate evolution. Masters. University of Missouri, Columbia.Google Scholar
Rejebian, V. A., Harris, A. G., and Huebner, J. S. 1987. Conodont color and textural alteration; an index to regional metamorphism, contact metamorphism, and hydrothermal alteration. Geological Society of America Bulletin, 99:471479.Google Scholar
Richter, D. K., Götte, T., Götze, J., and Neuser, R. D. 2003. Progress in the application of cathodoluminescence (CL) in sedimentary petrology. Minerology and Petrology, 79:127166.Google Scholar
Rosenau, N. A., Herrmann, A. D., and Leslie, S. A. 2012. Conodont apatite δ18O values from a platform margin setting, Oklahoma, USA: Implications for initiation of Late Ordovician icehouse conditions. Palaeogeography, Palaeoclimatology, Palaeoecology, 315–316:172180.Google Scholar
Royer, D. 2012. Climate reconstruction from leaf size and shape: New developments and challenges. In Ivany, L. C., and Huber, B. T. (eds.). Reconstructing Earth's Deep-Time Climate—The State of the Art in 2012, Paleontological Society Papers v. 18. The Paleontological Society, Colorado.Google Scholar
Sansom, I. J., Smith, M. P., Armstrong, H. A., and Smith, M. M. 1992. Presence of the earliest vertebrate hard tissues in conodonts. Science, 256(5061):13081311.Google Scholar
Secord, R., Gingerich, P. D., Lohmann, K. C., and Macleod, K. G. 2010. Continental warming preceding the Palaeocene–Eocene thermal maximum. Nature, 467:955958.Google Scholar
Seldon, G., and Sweet, W. C. 1971. An ecologic model for conodonts. Journal of Paleontology, 5:869880.Google Scholar
Sharp, Z. D., Atudorei, V., and Furrer, H. 2000. The effect of diagenesis on oxygen isotope ratios of biogenic phosphates. American Journal of Scoience, 300:222237.Google Scholar
Shields, G. A., Carden, G. A. F., Veizer, J., Meidla, T., Meidla, R.J., and Li, R.-Y. 2003. Sr, C, and O isotope geochemistry of Ordovician brachiopods; a major isotopic event around the Middle-Late Ordovician transition. Geochimica et Cosmochimica Acta, 67:20052025.Google Scholar
Suarez, C. A., González, L. A., Ludvigson, G. A., Cifelli, R. L., and Tremain, E. 2012. Water utilization of the Cretaceous Mussentuchit Member local vertebrate fauna, Cedar Mountain Formation, Utah, USA: Using oxygen isotopic composition of phosphate. Palaeogeography, Palaeoclimatology, Palaeoecology, 313–314:7892.Google Scholar
Sweet, W. C. 1988. The Conodonta: Morphology, Taxonomy, Paleoecology, and Evolutionary History of a Long Extinct Phylum. Clarendon Press, Oxford, 212 p.Google Scholar
Tierny, J. 2012. GDGT thermometry: Lipid tools for reconstructing paleotemperatures. In Ivany, L. C., and Huber, B. T. (eds.). Reconstructing Earth's Deep-Time Climate—The State of the Art in 2012, Paleontological Society Papers v. 18. The Paleontological Society, Colorado.Google Scholar
Trotter, J. A., Williams, I. S., Barnes, C. R., Lécuyer, C., and Nicoll, R. S. 2008. Did cooling oceans trigger Ordovician biodiversification? Evidence from conodont thermometry. Science, 321:550554.Google Scholar
Tudge, A. P. 1960. A method of analysis of oxygen isotopes in orthophosphate; its use in the measurement of paleotemperatures. Geochimica et Cosmochimica Acta, 18:8193.CrossRefGoogle Scholar
Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Garden, G. A. F., Diener, A., Ebneth, S., Godderis, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O. G., and Strauss, H. 1999. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chemical Geology, 161:5988.Google Scholar
Vennemann, T. W. 2002. Oxygen isotope analysis of phosphates; a comparison of techniques for analysis of Ag3PO4 . Chemical Geology, 185:321.CrossRefGoogle Scholar
Wenzel, B., Lécuyer, C., and Joachimski, M. M. 2000. Comparing oxygen isotope records of Silurian calcite and phosphate; δ18O compositions of brachiopods and conodonts. Geochimica et Cosmochimica Acta, 64:18591872.Google Scholar
Wheeley, J. R., Smith, M. P., and Boomer, I. 2012. Oxygen isotope variability in conodonts: implications for reconstructing Palaeozoic palaeoclimates and palaeoceanography. Journal of the Geological Society, London, 169:239250.Google Scholar
Zachos, J. C., Pagani, M., Sloan, L. C., Thomas, E., and Billups, K. 2001. Trends, rhythms and aberrations in global climate 65 Ma to present. Science, 292:686693.Google Scholar
Zachos, J. C., Stott, L. D., and Lohmann, K. C. 1994. Evolution of early Cenozoic marine temperatures. Paleoceanography, 9:353387.Google Scholar
Zazzo, A., Lecuyer, C., Sheppard, S. M. F., Grandjean, P., and Mariotti, A. 2004. Diagenesis and the reconstruction of paleoenvironments: A method to restore original δ18O values of carbonate from fossil tooth enamel. Geochimica et Cosmochimica Acta, 68:22452258.Google Scholar