Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-9m8n8 Total loading time: 0.718 Render date: 2022-10-04T01:04:33.249Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Solving Environmental Problems Using Diatom-Based Estimates of Ph, Nutrients, and Lake Levels

Published online by Cambridge University Press:  21 July 2017

Katrina A. Moser*
Affiliation:
Department of Geography University of Western Ontario 1151 Richmond St. North London, Ontario, N6A 5C2 Canada
Get access

Abstract

Serious environmental issues, including acid rain, eutrophication, and decreasing water availability, require knowledge of the: 1) baseline conditions (i.e., what were conditions like before human disturbance); 2) natural variability; and 3) time or level of disturbance when the system responded to the environmental change. This type of knowledge can only be obtained from a historical perspective, which is best achieved through actual measurements of environmental variables. Such records, however, rarely extend more than a few decades, which is usually insufficiently long to determine baseline conditions and natural variability. Diatoms, single celled algae characterized by a cell wall composed of opaline silica, preserved in lake sediments are one of the most widely used paleoindicators, and provide robust estimates of lakewater pH, nutrient concentration and lake level change. A variety of approaches have been developed to infer environmental variables using diatom data, and robust inferences of many environmental variables are now possible. Using paleolimnological techniques, fossil diatoms have been used to track pH, nutrients and lake levels. These records have significantly contributed to our understanding of the causes and impacts of lakewater acidification, eutrophication and hydrologic change, and provide a basis for developing effective management strategies.

Type
Research Article
Copyright
Copyright © by the Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agbeti, M. D. and Dickman, M. 1989. Use of fossil diatom assemblages to determine historical changes in trophic status. Canadian Journal of Fisheries and Aquatic Sciences, 46:103121.CrossRefGoogle Scholar
Alhonen, P. 1981. Stratigraphical studies on Lake Iidesjärvi sediments. Part I: Environmental changes and paleolimnological development. Bulletin of the Geological Survey of Finland, 53:97107.CrossRefGoogle Scholar
Anderson, N. J. 1989. A whole-basin diatom accumulation rate for a small eutrophic lake in northern Ireland and its paleoecological implications. Journal of Ecology, 77:926946.CrossRefGoogle Scholar
Anderson, N. J., Rippey, B. and Stevens, A. C. 1990. Change to a diatom assemblage in a eutrophic lake following point source nutrient re-direction: a paleolimnological approach. Freshwater Biology, 23:205217.CrossRefGoogle Scholar
Anderson, N. J., Blomqvist, P. and Renberg, I. 1997. An experimental and palaeoecological study of algal responses to lake acidification and liming in three central Swedish lakes. European Journal of Phycology, 32:3548.CrossRefGoogle Scholar
Anderson, N. J. and Renberg, I. 1992. A paleolimolgical assessment of diatom production responses to lake acidification. Environmental Pollution, 78:113119.CrossRefGoogle ScholarPubMed
Battarbee, R. W., 1984. Diatom analysis and the acidification of lakes. Philisophical Transactions of the Royal Society of London B, 305:451477.CrossRefGoogle Scholar
Battarbee, R. W., Anderson, N. J. and Jeppesen, E. 2005. Combining palaeolimnological and limnological approaches in assessing lake ecosystem response to nutrient reduction. Freshwater Biology, 50:17721780.CrossRefGoogle Scholar
Battarbee, R. W., Charles, D. C., Dixit, S. S., and Renberg, R. I. 1999. Diatoms as indicators of surface water acidity, p. 85127. In Stoermer, E. F. and Smol, J. P. (eds.), The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge, England.CrossRefGoogle Scholar
Battarbee, R. W., Jones, V. J., Flower, R. J., Cameron, N. G., Bennion, H., Carvalho, L. and Juggins, S. 2001. Diatoms, 155202. In Smol, J. P., Birks, H. J. B. and Last, W. M. (eds.), Tracking Environmental Change Using Lake Sediments. Volume 3: Terrestrial, Algal and Siliceous Indicators. Kluwer Academic Publishers, Dordrecht.Google Scholar
Battarbee, R. W., Mason, J., Renberg, I. and Talling, J. F. (eds.) 1990. Paleolimnology and Lake Acidification. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences. 327:441445.Google Scholar
Battarbee, R. W., Smol, J. P. and Meriläinen, J. 1986. Diatoms as indicators of pH: An historical review, pp. 514. In Smol, J. P., Battarbee, R. W., Davis, R.B. and Meriläinen, J. (eds.) Diatoms and Lake Acidity. Developments in Hydrobiology 29. Dr W. Junk Publishers, Dordrecht.CrossRefGoogle Scholar
Bennion, H., Juggins, S. and Anderson, N. J. 1996. Predicting epilimnetic phosphorus concentrations using an improved diatom-based transfer function and its application to lake eutrophication management. Environmental Science and Technology, 30:20042007.CrossRefGoogle Scholar
Birks, H. J. B. Frey, D. G. & Deevey, E. S. 1998. Review #1: Numerical tools in palaeolimnology - Progress, potentialities and problems. Journal of Paleolimnology, 20:307322.CrossRefGoogle Scholar
Bloom, A. M. 2006. A Paleolimnological investigation of climatic and hydrological conditions during the late Pleistocene and Holocene in the Sierra Nevada, California, USA. Ph.D. Dissertation, University of Utah, 177 p.Google Scholar
Bloom, A. M., Moser, K. A., Porinchu, D. F. and Macdonald, G. M. 2003. Diatom-inference models for surface water temperature and salinity from a 57-lake calibration set from the Sierra Nevada, California, USA. Journal of Paleolimnology, 29:235255.CrossRefGoogle Scholar
Bradbury, J. P. 1975. Diatom stratigraphy and human settlement. The Geological Society of America Special Paper, 171. Geological Society of America, Boulder, Colorado, pp. 74.Google Scholar
Bradbury, J. P. 1986. Effects of fire and other disturbances on wilderness lakes in northeastern Minnesota. II. Paleolimnology. Archiv für Hydrobiologie, 106:203217.Google Scholar
Bradbury, J. P. and Dieterich-Rurap, K. V. 1993. Holocene diatom paleolimnology of Elk Lake, Minnesota, p. 215238. In Bradbury, J. P. and Dean, W. E. (eds.), Elk Lake Minnesota: Evidence for Rapid Climate Change in the North Central United States, Special Paper 276, Geological Society of America, Boulder, Colorado.CrossRefGoogle Scholar
Bradshaw, E. G., Nielsen, A. B. and Anderson, N. J. 2006. Using diatoms to assess the impacts of prehistoric, pre-industrial and modern land-use on Danish lakes. Regional Environmental Change, 6:1724.CrossRefGoogle Scholar
Brugam, R. B. 1979. Are-evaluation of the Araphidineae/Centrales index as an indicator of lake trophic status. Freshwater Biology, 9:451460.CrossRefGoogle Scholar
Brugam, R. B. and Patterson, C. 1983. The A/C (Araphidineae/Centrales) ratio in high and low alkalinity lakes in eastern Minnesota. Freshwater Biology, 13:4755.CrossRefGoogle Scholar
Carpenter, S. R., Caraco, N. F., Correll, D. L., Howarth, R. W., Sharpley, A. N. and Smith, V. H. 1998. Non-point pollution of surface waters with phosphorus and nitrogen. Ecological Applications, 8:559568.CrossRefGoogle Scholar
Chacón-Baca, E., Berdali-Campesi, H., Cevallos-Ferriz, S. R. S., Knoll, A. H. and Golubic, S. 2002. 70 Ma nonmarine diatoms from northern mexico. Geology, 30:279281.2.0.CO;2>CrossRefGoogle Scholar
Charles, D. F., Battarbee, R. W., Renberg, I., Van Dam, H. and Smol, J. P. 1989. Paleoecological analysis of lake acidification trends in North America and Europe using diatoms and chrysophytes, pp. 207276. In Norton, S. A., Lindberg, S. E. and Page, A. L. (eds) Acid Precipitation, Volume 2. Springer-Verlag, Stuttgart, Germany.Google Scholar
Charles, D. F., Binford, M. W., Fry, B. D., Furlong, E., Hites, R. A., Mitchell, M., Norton, S. A., Paterson, M. J., Smol, J. P., Uutala, A. J., White, J. R., Whitehead, D. R. and Wise, R.J. 1990. Paleoecological investigation of recent lake acidification in the Adirondack Mountains, N.Y. Journal of Paleolimnology, 3:195241.Google Scholar
Charles, D. F. and Smol, J. P. 1990. The PIRLA II project: regional assessment of lake acidification trends. Verhandlungen der Internationalen Vereinigung von Limnologen, 24:474480.Google Scholar
Charles, D. F. and Whitehead, D. R. 1986. The PIRLA project: Paleoecological Investigation of Recent Lake Acidification. Hydrobiologia, 143:1320.CrossRefGoogle Scholar
Christie, C. E. and Smol, J. P. 1993. Diatom assemblages as indicators of lake trophic status in southeastern Ontario lakes. Journal of Phycology 29:575586.CrossRefGoogle Scholar
Christensen, J. H., Hewitson, B., Busuioc, A., Chen, A., Gao, X., Held, I., Jones, R., Kolli, R. K., Kwon, W.T., Laprise, R., Magaña Rueda, V., Mearns, L., Menéndez, C. G., Räisänen, J., Rinke, A., Sarr, A. and Whetton, P. 2007. Regional Climate Projections, p. In Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M. and Miller, H. L. (eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, England.Google Scholar
Clark, J. S., Grimm, E. C., Donovan, J. J., Fritz, S. C., Engstrom, D. R. and Almendinger, J. E. 2002. Drought cycles and landscape responses to past aridity on prairies of the northern Great Plains, USA. Ecology, 83:595601.CrossRefGoogle Scholar
Clerk, S., Hall, R., Quinlan, R., and Smol, J. P. 2000. Quantitative inferences of past hypolimnetic anoxia and nutrient levels from a Canadian Precambrian Shield lake. Journal of Paleolimnology, 23:319336.CrossRefGoogle Scholar
Cumming, B. F., Davey, K. A., Smol, J. P. and Birks, H. J. B. 1994. When did acid-sensitive Adirondack lakes (New York, USA) begin to acidify and are they still acidifying? Canadian Journal of Fisheries and Aquatic Sciences, 51:15501568.CrossRefGoogle Scholar
Cumming, B. F., Laird, K. R., Bennett, J. R., Smol, J. P. and Salomon, A.K. 2002. Persistent millennial scale shifts in moisture regimes in western Canada during the past six millennia. Proceedings of the National Academy of Science, 99:1611716121.CrossRefGoogle ScholarPubMed
Cumming, B. F. and Moser, K. A. This volume. Applications of commonly used numerical techniques in diatom-based paleoecology.Google Scholar
Cumming, B. F., Smol, J. P., Kingston, J. C., Charles, D. F., Birks, H. J. B., Camburn, K. E., Dixit, S. S., Uutala, A. J., and Selle, A. R. 1992. How much acidification has occurred in Adirondack region lakes (New York, U.S.A.) since pre-industrial times? Canadian Journal of Fisheries and Aquatic Sciences, 49:128141.CrossRefGoogle Scholar
Dean, W., Rosenbaum, J., Skipp, G., Colman, S., Forester, R., Liu, A., Simmons, K. and Bischoff, J. 2006. Unusual Holocene and late Pleistocene carbonate sedimentation in Bear Lake, Utah and Idaho, USA. Sedimentary Geology, 185:93112.CrossRefGoogle Scholar
Digerfeldt, G., 1986. Studies on past lake-level fluctuations, p. 127143. In Berglund, B. E. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. J. Wiley & Sons, Toronto.Google Scholar
Dixit, S. S., Dixit, A. S. and Smol, J. P. 1991. Multivariate environmental inferences based on diatom assemblages from Sudbury (Canada) lakes. Freshwater Biology, 26:251266.CrossRefGoogle Scholar
Dixit, S. S., Dixit, A. S. and Smol, J. P. 1992. Algal microfossils provide high temporal resolution of environmental trends. Water, Air and Soil Pollution, 62:7587.CrossRefGoogle Scholar
Dixit, S. S., Dixit, A. S. and Smol, J. P. 2002. Diatom and chrysophyte functions and inferences of post-industrial acidification and recent recovery trends in Killarney lakes (Ontario, Canada). Journal of Paleolimnology, 27:7996.CrossRefGoogle Scholar
Douglas, M. S. V., Smol, J. P., Savelle, J. M. and Blais, J. M. 2004. Prehistoric Inuit whalers affected arctic freshwater ecosystems. Proceedings of the National Academy of Sciences, 101:16131617.CrossRefGoogle ScholarPubMed
Eilers, J. M., Kann, J., Cornett, J., Moser, K. A. and St. Armand, A. 2004. Paleolimnological evidence of change in a shallow, hypereutrophic lake: Upper Klamuth Lake, Oregon, USA. Hydrobiologia, 520:718.CrossRefGoogle Scholar
Ekdahl, E. J., Teranes, J. L., Wittkop, C. A., Stoermer, E. F., Reavie, E. D. and Smol, J. P. 2007. Diatom assemblage response to Iroquoian and Euro-Canadian eutrophication of Crawford Lake, Ontario, Canada. Journal of Paleolimnolgy, 37:233246.CrossRefGoogle Scholar
Ekdahl, E. J., Teranes, J. L., Guilderson, T. P., Turton, C. L., McAndrews, J. H., Wittkop, C. A. and Stoermer, E. F. 2004. Prehistorical record of cultural eutrophication from Crawford Lake, Canada. Geology, 32:745748.CrossRefGoogle Scholar
Enache, M. and Prairie, Y. T. 2000. Paleolimnological reconstruction of forest fire induced changes in lake biogeochemistry (Lac Francis, Abitibi, Quebec, Canada). Canadian Journal of Fisheries and Aquatic Sciences, 57:146154.CrossRefGoogle Scholar
Engstrom, D. R., Whitlock, C., Fritz, S. C. and Wright, H. E. Jr. 1991. Recent environmental changes inferred from the sediments of small lakes in Yellowstone's northern range. Journal of Paleolimnogy 5:139174.Google Scholar
Flower, R. J., Cameron, N. G., Rose, N., Fritz, S. C., Harriman, A. R. and Stevenson, A. C. 1990. Post-1970 water-chemistry changes and paleolimnology of several acidified upland lakes in the UK. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 327: 427433.CrossRefGoogle Scholar
Fritz, S. C. 1996. Paleolimnological records of climatic change in North America. Limnology and Oceanography, 41:882889.CrossRefGoogle Scholar
Fritz, S. C., Cumming, B. F., Gasse, F., and Laird, K. 1999. Assessing conditions of hydrologic and climate change in saline lakes, p. 4172. In Stoermer, E. F. and Smol, J. P. (eds.), The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge, England.CrossRefGoogle Scholar
Gasse, F., Lédée, V., Massault, M. AD Fontes, J. C. 1989b. Water level fluctuations in Lake Tanganyika in phase with oceanic changes during the last glaciation and deglaciation. Nature, 342:5759.CrossRefGoogle Scholar
Gasse, F., Stabell, B., Fourtanier, E., and Van Iperen, Y. 1989a. Freshwater diatom influx in intertropical Atlantic: relationships with continental records from Africa. Quaternary Research, 32:229243.CrossRefGoogle Scholar
Glew, J. R., Smol, J. P. and Last, W. M. 2001. Sediment core collection and extrusion, p. 73106. In Last, W. M. and Smol, J. P. (eds.), Tracking Environmental Change Using Lake Sediments. Volume 1: Basin Analysis, Coring and Chronological Techniques. Kluwer Academic Publishers, Dordrecht.Google Scholar
Guhrén, M., Bigler, C. and Renberg, I. 2007. Liming placed in a long-term perspective: a paleolimnological study of 12 lakes in the Swedish liming program. Journal of Paleolimnology, 37:247258.CrossRefGoogle Scholar
Hall, R. I. and Smol, J. P. 1992. A weighted averaging regression and calibration model for inferring total phosphorus concentration from diatoms in British Columbia (Canada) Lakes. Freshwater Biology, 27:417434.CrossRefGoogle Scholar
Hall, R. I. and Smol, J. P. 1993. The influence of catchment size on lake trophic status during the hemlock decline and recovery (4,800 to 3,500 BP) in southern Ontario lakes. Hydrobiologia, 269/270:371390.CrossRefGoogle Scholar
Hall, R. I. and Smol, J. P. 1999. Diatoms as indicators of lake eutrophication, p. 128168. In Stoermer, E. F. and Smol, J. P. (eds.), The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge, England.CrossRefGoogle Scholar
Harrison, S. P. and Digerfeldt, G. 1993. European lakes as palaeohydrological and palaeoclimatic indicators. Quaternary Science Reviews, 12:233248.CrossRefGoogle Scholar
Harrison, S. P. and Metcalfe, S. E. 1985. Variations in lake levels during the Holocene in North America: an indicator of changes in atmospheric circulation patterns. Geographie Physique et Quaternaire, 39:141150.CrossRefGoogle Scholar
Hustedt, F. 1937–1939. Systematische und ökologische Untersuchungen über den Diatomeenflora von Java, Bali, Sumatra. Archiv für Hydrobiologie (Supplement) 15 and 16.Google Scholar
Irvine, K., Moss, B. and Balls, H. 1989. The loss of submerged plants with eutrophication II. Relationships between fish and zooplankton in a set of experimental ponds, and conclusions. Freshwater Biology, 22:89107.CrossRefGoogle Scholar
IPCC, 2007. Summary for Policymakers, p. In Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M. and Miller, H. L. (eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, England.Google Scholar
Kilham, S. S. 1984. Silicon and phosphorus growth kinetics and competitive interactions between Stephanodiscus minutus and Synedra sp. Verhandlungen der Internationalen Vereinigung von Limnologen, 22:435439.Google Scholar
Kilham, P., Kilham, S. S. and Hecky, R. E. 1986. Hypothesized resource relationships among African planktonic diatoms. Limnology and Oceanography, 31:11691181.CrossRefGoogle Scholar
Kira, T. 1993. Major environmental problems in world lakes. Memorie dell'Istituto italiano di hidrobiología, 52:17.Google Scholar
Laird, K. R., Cumming, B. F., Wunsam, S., Rusak, J. A., Oglesby, R. J., Fritz, S. C. and Leavitt, P. R. 2003. Lake sediments record large-scale shifts in moisture regimes across the northern prairies of North America during the past two millennia. Proceedings of the National Academy of Sciences, 100:24832488.CrossRefGoogle ScholarPubMed
Laird, K. R., Fritz, S. C., Maasch, K. A. and Cumming, B. F. 1996. Greater drought frequency before AD 1200 in the northern Great Plains, USA. Nature, 384:552554.CrossRefGoogle Scholar
Last, W. M. and Smol, J. P. (eds.), 2001. Tracking Environmental Change Using Lake Sediments. Volume 1: Basin Analysis, Coring and Chronological Techniques. Kluwer Academic Publishers: Dordrecht.CrossRefGoogle Scholar
Leroy, S. A. G. and Colman, S. M. 2001. Coring and drilling equipment and procedures for recovery of long lacustrine sequences, p. 107136. In Last, W. M. and Smol, J. P. (eds.), Tracking Environmental Change Using Lake Sediments. Volume 1: Basin Analysis, Coring and Chronological Techniques. Kluwer Academic Publishers, Dordrecht.Google Scholar
Macdonald, G. M., Felzer, B., Finney, B. and Forman, S. 2000. Holocene lake sediment records of Arctic hydrology. Journal of Paleolimnology, 24: 114.CrossRefGoogle Scholar
Meehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, P., Gaye, A. T., Gregory, J. M., Kitoh, A., Knutti, R., Murphy, J. M., Noda, A., Raper, S. C. B., Watterson, I. G., Weaver, A. J. and Zhao, Z. C. 2007. Global Climate Projections, p. 747845. In Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M. and Miller, H. (eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, England.Google Scholar
Meriläinen, J. 1967. The diatom flora and the hydrogen-ion concentration of water. Annales Botanici Fennici, 4:5158.Google Scholar
Michel, T. J., Saros, J. E., Interlandi, S. J. and Wolfe, A. P. 2006. Resource requirements of four freshwater diatom taxa determined by in situ growth bioassays using natural populations from alpine lakes. Hydrobiologia, 568:235243.CrossRefGoogle Scholar
Michelutti, N., Douglas, M. S. V. and Smol, J. P. 2002. Tracking recent recovery from eutrophication in a high arctic lake (Meretta Lake, Cornwallis Island, Nunavut, Canada) using fossil diatom assemblages. Journal of Paleolimnoligy, 28:377381.CrossRefGoogle Scholar
Moser, K. A., Korhola, A., Wekström, J., Blom, T., Pienitz, R. P., Smol, J. P., Douglas, M. S. V. and Hay, M. B. 2000. Paleohydrology inferred from diatoms in northern latitude regions. Journal of Paleolimnology, 24:93107.CrossRefGoogle Scholar
Moser, K. A., Smol, J. P., Macdonald, G. M. and Larsen, C. P. 2002. 19th Century eutrophication of a remote boreal lake: a consequence of climate warming? Journal of Paleolimnology, 28:269281.CrossRefGoogle Scholar
Nygaard, G. 1949. Hydrobiological studies on some Danish ponds and lakes. II. The quotient hypothesis and some new or little known phytoplankton organisms. Det Kongelinge Dansk Videnskabernes Selskab Biologiske Skrifter, 7:1193.Google Scholar
Nygaard, G. 1956. Ancient and recent flora of diatoms and chrysophyceae in Lake Gribsø. Studies on the humic acid lake Gribsø. Folia Limnologica Scandinavica, 8:3294.Google Scholar
Pienitz, R., Roberge, K. and Vincent, W. F. 2006. Three hundred years of human-induced change in an urban lake: paleolimnological analysis of Lac Saint-Augustin, Quebec City, Canada. Canadian Journal of Botany, 84:303320.CrossRefGoogle Scholar
Pienitz, R. P., Smol, J. P. and Macdonald, G. M. 1999. Paleolimnological reconstruction of Holocene climatic trends from two boreal treeline lakes, Northwest Territories, Canada. Arctic, Antarctic and Alpine Research, 31:8293.CrossRefGoogle Scholar
Pienitz, R. P. and Vincent, W. F. 2000. Effect of climate change relative to ozone depletion on UV exposure in subarctic lakes. Nature, 404:484487.CrossRefGoogle ScholarPubMed
Ramstack, J. M., Fritz, S. C. and Engstrom, D. R. 2004. Twentieth century water quality trends in Minnesota lakes compared with presettlement variability. Canadian Journal of Fisheries and Aquatic Sciences, 61:561576.CrossRefGoogle Scholar
Räsänen, J, Kauppila, T. and Salonen, V. P. 2006. Sediment-based investigation of naturally or historically eutrophic lakes - implications for lake management. Journal of Environmental Management, 79:253265.CrossRefGoogle ScholarPubMed
Renberg, I and Hultberg, H. 1992. A paleolimnological assessment of acidification and liming effects on diatom assemblages in a Swedish lake. Canadian Journal of Fisheries and Aquatic Sciences, 49:6572.CrossRefGoogle Scholar
Saros, J. E. and Fritz, S. C. 2002. Resource competition among saline-lake diatoms under varying N/P ratio, salinity and anion composition. Freshwater Biology, 47:8795.CrossRefGoogle Scholar
Saros, J. E., Michel, T. J. and Interlandi, S. J. and Wolfe, A. P. 2005. Resource requirements of Asterionella formosa and Fragilaria crotonensis in oligotrophic alpine lakes: implications for recent phytoplankton community reorganizations. Canadian Jnal of Fisheries and Aquatic Sciences, 62:16811689.CrossRefGoogle Scholar
Schindler, D. W. 1997. Liming to restore acidified lakes and streams: a typical approach to restoring damaged ecosystems? Restoration Ecology, 5:16.CrossRefGoogle Scholar
Schindler, D. W., Curtis, P. J., Parker, B. and Stainton, M. 1996. Consequences of climate warming, and lake acidification for UV-B penetration in North American boreal lakes. Nature, 379:705709.CrossRefGoogle Scholar
Schindler, D. W., Mills, K. H., Malley, D. F., Findlay, D. L., Shearer, J. A., Davies, I. J., Turner, M. A., Linsey, G. A. and Cruikshank, D. R. 1985. Long-term ecosystem stress: the effects of years of experimental acidification of a small lake. Science, 228:13951401.CrossRefGoogle ScholarPubMed
Sims, P. A., Mann, D. G. and Medlin, L. K. 2006. Evolution of the diatoms: insights from fossil, biological and molecular data. Phycologia, 45:361402.CrossRefGoogle Scholar
Smith, L. C., Sheng, Y., Macdonald, G. M. and Hinzman, D. A. 2005. Disappearing arctic lakes. Science, 308:14291429.CrossRefGoogle ScholarPubMed
Smith, R. A. 1872. Air and Rain, the beginnings of a Chemical Climatology. Longmans, Green, & Co.: London.Google Scholar
Smol, J. P. 2002. Pollution of Lakes and Rivers: A Paleoenvironmental Perspective. London: Arnold.Google Scholar
Smol, J. P., Cumming, B. F., Dixit, A. S. and Dixit, S. S. 1998. Tracking recovery patterns in acidified lakes: A paleolimnological perspective. Restoration Ecology, 6:318326.CrossRefGoogle Scholar
Smol, J. P., Brown, S. R. and McNeely, R. N. 1983. Cultural disturbances and trophic history of a small meromictic lake in central Canada. Hydrobiologia, 103:2549.Google Scholar
Stager, J. C., Ryves, D., Cumming, B. F., Meeker, L. D. and Beer, L. 2005. Solar variability and the levels of Lake Victoria, East Africa, during the last millenium. Journal of Paleolimnology, 33:243251.CrossRefGoogle Scholar
Stevens, L. R., Stone, J. R., Campbell, J., 2006. A 2200-yr record of hydrologic variability from Foy Lake, Montana, USA, inferred from diatom and geochemical data. Quaternary Research, 65: 264274.CrossRefGoogle Scholar
Stockner, J. G. 1971. Preliminary characterization of lakes in the Experimental Lakes Area, northwestern Ontario using diatom occurrences in lake sediments. Journal of the Fisheries Research Board of Canada, 28:265275.CrossRefGoogle Scholar
Stockner, J. G. 1972. Paleolimnology as a means of assessing eutrophication. Verhandlungen der Internationalen Vereinigung von Limnologen, 18:10181030.Google Scholar
Stoermer, E. F., Wolin, J. A., Schelske, C. L. and Conley, D. J. 1985. An assessment of ecological changes during the recent history of lake Ontario based on siliceous microfossils preserved in the sediments. Journal of Phycology, 21: 257276.CrossRefGoogle Scholar
Stone, J. R. and Fritz, S. C. 2004. Three-di-mensional modeling of lacustrine diatom habitat areas: Improving paleolimnological interpretation of planktic: benthic ratios. Limnology and Oceanography, 49:15401548.CrossRefGoogle Scholar
Street-Perrott, F. A. and Harrison, S. P., 1985. Lake levels and climate reconstruction, p. 291340. In Hecht, A. D. (ed.), Paleoclimate Analysis and Modelling. J. Wiley & Sons, New York.Google Scholar
Street-Perrott, F. A. and Roberts, N. 1983. Fluctuations in closed lakes as an indicator of past atmospheric circulation patterns, p. 331345. In Street-Perrott, F. A., Beran, M. and Ratcliffe, R. A. S. (eds.), Variations in the Global Water Budget. Reidel, Dordrecht.CrossRefGoogle Scholar
Tibby, J. 2004. Development of a diatom-based model for inferring total phosphorus in southeastern Australian water storages. Journal of Paleolimnology, 31:2336.CrossRefGoogle Scholar
Tilman, D., Kilham, S. S. and Kilham, P. 1982. Phytoplankton community ecology: The role of limiting nutrients. Annual Reviews: Ecology, Evolution and Systematics, 13:349372.Google Scholar
Vallet-Coulomb, C., Gasse, F., Robison, L., Ferry, L., Van Campo, E. and Chalie, F. 2006. Hydrological modeling of tropical closed Lake Ihotry (SW Madagascar): Sensitivity analysis and implications for paleohydrological reconstructions over the past 4000 years. Journal of Hydrology, 331:257271.CrossRefGoogle Scholar
Van Donk, E. and Kilham, S. S. 1990. Temperature effects on silicon and phosphorus-limited growth and competitive interactions between three diatoms. Journal of Phycology, 26:4050.CrossRefGoogle Scholar
Werner, P. and Smol, J. P. 2005. Diatom-environmental relationships and nutrient transfer functions from contrasting shallow and deep limestone lakes in Ontario, Canada. Hydrobiologia, 533:145173.CrossRefGoogle Scholar
Wetzel, R. G. 2001. Limnology: Lakes and River Ecosystems. Third Edition. Academic Press, London, England.Google Scholar
Whitmore, T. J. 1989. Florida diatom assemblages as indicators of trophic state and pH. Limnolgy and Oceanography, 34:882895.CrossRefGoogle Scholar
Willén, E. 1991. Planktonic diatoms - an ecological review. Algological Studies, 62:69106.Google Scholar
Winkler, M. G., Swain, A. M. and Kutzbach, J. E., 1986. Middle Holocene dry period in the northern midwestern United States: Lake levels and pollen stratigraphy. Quaternary Research, 25:235250.CrossRefGoogle Scholar
Wolfe, A. P., Baron, J. S. and Cornett, R.J.R.J. 2001. Anthropogenic nitrogen deposition induces rapid ecologcal changes in alpine lakes of the Colorado Front Range (USA). Journal of Paleolimnology, 25:17.CrossRefGoogle Scholar
Wolfe, B. B., Hall, R. I., Last, W. M., Edwards, T. W. D., English, M. C., Karst-Riddoch, T. L., Paterson, A. and Palmini, R. 2006. Reconstruction of multi-century flood histories from Oxbow Lake sediments, Peace-Athabasca Delta, Canada. Hydrological Processes, 20:41314153.CrossRefGoogle Scholar
Wolfe, B. B., Karst-Riddoch, T. L., Vardy, S. R., Falcone, M. D., Hall, R. I., Edwards, T. W. D. 2005. Impacts of climate and river flooding on the hydro-ecology of a floodplain basin, Peace-Athabasca Delta, Canada since AD 1700. Quaternary Research, 64:147162.CrossRefGoogle Scholar
Wolin, J. A. and Duthie, H. C. 1999. Diatoms as indicators of water level change in freshwater lakes, p. 183226. In Stoermer, E. F. and Smol, J. P. (eds.), The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge, England.CrossRefGoogle Scholar
Woodhouse, C. A. and Overpeck, J. T. 1998. 2000 years of drought variability in the central United States. Bulletin of the American Meteorological Society, 79:26932714.2.0.CO;2>CrossRefGoogle Scholar
Wright, H. E. Jr. 1976. The impact of forest fire on the nutrient influxes to small lakes in northeastern Minnesota. Ecology, 57:649662.CrossRefGoogle Scholar
Yang, J. R. and Duthie, H. C. 1995. Regression and weighted averaging models relating surficial sedimentary diatom assemblages to water depth in Lake Ontario. Journal of Great Lakes Research, 21:8494.CrossRefGoogle Scholar
Yu, G. and Harrison, S. P. 1995. Holocene changes in atmospheric circulation patterns as shown by lake status changes in northern Europe. Boreas, 24:260268.CrossRefGoogle Scholar
1
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Solving Environmental Problems Using Diatom-Based Estimates of Ph, Nutrients, and Lake Levels
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Solving Environmental Problems Using Diatom-Based Estimates of Ph, Nutrients, and Lake Levels
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Solving Environmental Problems Using Diatom-Based Estimates of Ph, Nutrients, and Lake Levels
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *