Skip to main content Accessibility help
Hostname: page-component-568f69f84b-r4dm2 Total loading time: 0.314 Render date: 2021-09-22T23:51:53.151Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Paleontology's Greatest Hits

Published online by Cambridge University Press:  21 July 2017

Richard K. Bambach*
Department of Paleobiology Smithsonian Institution, National Museum of Natural History MRC – 121 NMNH Washington, DC 20013-7012
Get access


Although this paper mentions many specific discoveries and advances it is not intended as a catalog of the “biggest hits” in the sense of public notice, but rather it is an effort to chart how the diversity of paleontological work in the last century fits into the context of the biggest hit of all, the emergence of a “new paleontology” in which conceptual advances have revolutionized every aspect of our profession. When the Paleontological Society was founded no unambiguous fossils were known from the immense stretch of Precambrian time and no hominine fossils were known from Africa. Rigorous phylogenetic analysis and a seat for paleontology at the “high table” of evolutionary biology were in the future. Where once we learned a series of guide fossils and thought we had studied paleontology, now students explore taphonomy, paleoeocology, geobiology and macroevolution in our general courses on paleontology. This paper attempts to take notice of some of the highlights of our evolution from a field focused on cataloging and describing the contents of the fossil record into a complex, multidisciplinary endeavor focused on analytical study of general questions. Some of those hits have been discoveries that document the course of evolution, some have been new conceptual approaches that give us insights that link pattern to process, some are new ways of compiling, analyzing or communicating our knowledge. But with all that the study of the history of life remains at the heart of our profession. The change has been the shift in goal from description to understanding of that history, from “what” to “how.” The greatest hits have been the steps that have opened the way to understanding, that have made following the path possible.

Research Article
Copyright © by the Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Adrain, J. M., Edgecombe, G. D., and Lieberman, B. S. (eds.). 2001. Fossils, Phylogeny, and Form: An Analytical Approach. Kluwer Academic/Plenum, New York. 402 p.CrossRefGoogle Scholar
Ager, D. V. 1963. Principles of Paleoecology. McGraw-Hill Book Company, Inc., New York. 371 p.Google Scholar
Allison, P. A. and Briggs, D. E. G. 1991. Taphonomy: Releasing the Data Locked in the Fossil Record. Plenum, New York. 560 p.CrossRefGoogle Scholar
Allwood, A. C., Walter, M. R., Kamber, B. S., Marshall, C. P., and Burch, I. W. 2006. Stromatolite reef from the Early Archaean era of Australia. Nature, 441:714718.CrossRefGoogle Scholar
Alroy, J., Aberhan, M., Bottjer, D. J., Foote, M., Fürsich, F. T., Harries, P. J., Hendy, A. J. W., Holland, S. M., Ivany, L. C., Kiessling, W., Kosnik, M. A., Marshall, C. R., McGowan, A. J., Miller, A. I., Olszewski, T. D., Patzkowsky, M. E., Peters, S. E., Villier, L., Wagner, P. J., Bonuso, N., Borkow, P. S., Brenneis, B., Clapham, M. E., Fall, L. M., Ferguson, C. A., Hanson, V. L., Krug, A. Z., Layou, K. M., Leckey, E. H., Nürnberg, S., Powers, C. M., Sessa, J. A., Simpson, C., Tomasnovyach, A., and Visaggi, C. C. 2008. Phanerozoic trends in the global diversity of marine invertebrates. Science, 321:97100.CrossRefGoogle ScholarPubMed
Anderson, J. S. and Sues, H.-D. (eds.). 2007. Major Transitions in Vertebrate Evolution. Indiana University Press, Bloomington, Indiana. 417 p.Google Scholar
Bambach, R. K. 2006. Phanerozoic biodiversity mass extinctions. Annual Review of Earth and Planetary Sciences, 34:127155.CrossRefGoogle Scholar
Barghoorn, E. S. and Tyler, S. A. 1965. Microorganisms from the Gunflint Chert. Science, 147:563577.CrossRefGoogle ScholarPubMed
Barton, N. H., Briggs, D. E. G., Eisen, J. A., Goldstein, D. B., and Patel, N. H. 2007. Evolution. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York. 833 p.Google ScholarPubMed
Beerbower, J. R. 1960. Search for the Past. Prentice-Hall, Englewood Cliffs, New Jersey, 512 p.Google Scholar
Behrensmeyer, A. K., Damuth, J. D., Potts, R., Wing, S. L., and Sues, H.-D. 1992. Terrestrial Ecosystems Through Time: Evolutionary Paleoecology of Terrestrial Plants and Animals. University of Chicago Press, Chicago, Illinois. 588 p.Google Scholar
Bekker, A., Holland, H. D., Wang, P.-L., Rumble Iii, D., Stein, H. J., Hannah, J. L., Coetzee, L. L., and Beukes, N. J. 2004. Nature, 427:117120.CrossRefGoogle Scholar
Benton, M. J. 1993. The Fossil Record 2. Chapman and Hall, London. 845 p.Google Scholar
Berggren, W. A., Kent, D. V., Aubry, M.-P., and Hardenbol, J. 1995. Geochronology, Time Scales and Global Stratigraphic Correlation. SEPM (Society for Sedimentary Geology) Special Publication Number 54. 386 p.Google Scholar
Berkner, L. V. and Marshall, L. C. 1965. On the origin and rise of oxygen concentration in the Earth's atmosphere. Journal of the Atmospheric Sciences, 22:225261.2.0.CO;2>CrossRefGoogle Scholar
Berner, R. A. 1987. Models for carbon and sulfur cycles and atmospheric oxygen: Application to Paleozoic geologic history. America Journal of Science, 287:177196.Google Scholar
Berner, R. A. 2004. The Phanerozoic Carbon Cycle: CO2 and O2 . Oxford University Press, Oxford, U.K. 150 p.Google Scholar
Bottjer, D. J. (ed.). 2001. Evolutionary Paleoecology. Columbia University Press, New York. 320 p.Google Scholar
Bottjer, D. J., Eter, W., Hagadorn, J. W., and Tang, C. M. (eds.), 2002. Exceptional Fossil Preservation: A Unique View on the Evolution of Marine Life. Columbia University Press, New York. 403 p.Google Scholar
Bretsky, P. W. 1968. Evolution of Paleozoic marine invertebrate communities. Science, 159:12311233.CrossRefGoogle ScholarPubMed
Bretsky, P. W. 1969. Evolution of Paleozoic benthic marine invertebrate communities. Palaeogeography, Palaeoclimatology, Palaeoecology, 6:4559.CrossRefGoogle Scholar
Brett, C. E. and Baird, G. C. 1986. Comparative taphonomy: A key to paleoenvironmental interpretation based on fossil preservation. Palaios, 1:207227.CrossRefGoogle Scholar
Briggs, D. E. G. and Crowther, P. R. (eds.). 1990. Palaeobiology: A Synthesis. Blackwell Scientific Publications, Oxford, U. K. 583 p.Google Scholar
Briggs, D. E. G. and Crowther, P. R. (eds.). 2001. Palaeobiology II. Blackwell Science Publications, Oxford, U. K. 583 p.CrossRefGoogle Scholar
Briggs, D. E. G., Erwin, D. H., and Collier, F. J. 1994. The Fossils of the Burgess Shale. Smithsonian Institution Press, Washington, D. C. 238 p.Google ScholarPubMed
Brocks, J. J., Logan, G. A., Buck, R., and Summons, R. E. 1999. Archean molecular fossils and the early rise of eukaryotes. Science, 285:10331036.CrossRefGoogle ScholarPubMed
Brocks, J. J. and Pearson, A. 2005. Building the biomarker tree of life. Reviews in Mineralogy and Geochemistry, 59:233258.CrossRefGoogle Scholar
Canfield, D. E. 1998. A new model for Proterozoic ocean chemistry. Nature, 396:450453.CrossRefGoogle Scholar
Canfield, D. E. 2005. Early history of atmospheric oxygen. Annual Review of Earth and Planetary Sciences, 33:136.CrossRefGoogle Scholar
Ciochon, R. L. and Fleagle, J. G. 1993. The Human Evolution Source Book. Pearson Prentice Hall, Upper Saddle River, New Jersey. 675 p.Google Scholar
Ciochon, R. L. and Fleagle, J. G. 2006. The Human Evolution Source Book, Second Edition. Pearson Prentice Hall, Upper Saddle River, New Jersey. 699 p.Google Scholar
Clack, J. A. 2002. Gaining Ground: The Origin and Evolution of Tetrapods. Indiana University Press, Bloomington, Indiana. 369 p.Google Scholar
Clarkson, E. N. K. 1966. Schizochroal eyes and vision of some Silurian acastid trilobites. Palaeontology, 9:129.Google Scholar
Conway Morris, S. 1998. The Crucible of Creation: The Burgess Shale and the Rise of Animals. Oxford University Press, Oxford. 242 p.Google Scholar
Cracraft, J. and Donoghue, M. J. (eds.). 2004. Assembling the Tree of Life. Oxford University Press, New York. 576 p.Google Scholar
Craig, G. Y. and Oertel, G. 1966. Deterministic models of living and fossil populations of animals. Quarterly Journal of the Geological Society of London, 122:315355.CrossRefGoogle Scholar
Crane, P. R., Friis, E. M., and Pedersen, K. R. 1995. The origin and early diversification of angiosperms. Nature, 374:2733.CrossRefGoogle Scholar
Crimes, T. P. and Harper, J. C. (eds.) 1970. Trace Fossils. Seel House Press, Liverpool, U. K. 547 p.Google Scholar
Cronin, T. M. 1999. Principles of Paleoclimatology. Columbia University Press, New York. 560 p.Google Scholar
Cushman, J. A. 1928. Foraminifera; Their Classification and Economic Use. Cushman Laboratory for Foraminiferal Research, Special Publication Number 1. Sharon, Massachusetts. 401 pp, 59 pl. (fourth edition, 1948, 605 pp., published by Harvard Univ. Press.) Google Scholar
Daeschler, E. B., Shubin, N. H., and Jenkins, F. A. Jr. 2006. A Devonian tetrapod-like fish and the evolution of the tetrapod body plan. Nature, 440:757763.CrossRefGoogle ScholarPubMed
Darwin, C. 1959. On the Origin of Species by Means of Natural Selection or the Preservation of Favoured Races in the Struggle for Life. Facsimile of the first edition printed by John Murray, London, with an introduction by E. Mayr, who also expanded the index. Harvard University Press, Cambridge, Massachusetts. xxvii + 513 pp.Google Scholar
Dodd, J. R. and Stanton, R. J. Jr. 1990. Paleoecology, Concepts and Applications, Second Edition. Wiley, New York. 502 p.Google Scholar
Donoghue, P. C. J. and Smith, M. P. (eds.). 2004. Telling the Evolutionary Time: Molecular Clocks and the Fossil Record. CRC Press, New York. 288 p.Google Scholar
Donovan, S. K. (ed.). 1991. The processes of fossilization. Columbia University Press, New York. 303 p.Google Scholar
Doyle, J. A. and Hickey, L. J. 1976. Pollen and leaves from the mid-Cretaceous Potomac Group and their bearing on early angiosperm evolution, p. 139206. In Beck, C. B. (ed.) Origin and Early Evolution of Angiosperms. Columbia University Press, New York.Google Scholar
Droser, M. L. and Bottjer, D. J. 1986. A semiquantitative field classification of ichnofabric. Journal of Sedimentary Petrology, 56:558559.CrossRefGoogle Scholar
Efremov, J. A. 1940. Taphonomy: new branch of paleontology. Pan-American Geologist 74:8193.Google Scholar
Eldredge, N. 1971. The allopatric model and phylogeny in Paleozoic invertebrates. Evolution, 25:156167.CrossRefGoogle ScholarPubMed
Eldredge, N. and Gould, S. J. 1972. Punctuated equilibria: An alternative to phyletic gradualism, p. 82115. In Schopf, T. J.M. (ed.) Models in Paleobiology. Freeman, Cooper and Company, San Francisco, California.Google Scholar
Emiliani, C. 1955. Pleistocene temperatures. Journal of Geology, 63:538578.CrossRefGoogle Scholar
Emiliani, C. 1966. Isotopic paleotemperatures. Science, 154:851857.CrossRefGoogle ScholarPubMed
Erwin, D. H. 2006. Extinction: How Life on Earth Nearly Ended 250 Million Years Ago. Princeton University Press, Princeton, New Jersey. 296 p.Google Scholar
Fisher, D. C. 1994. Stratocladistics: Morphological and temporal patterns and their relation to phylogenetic process, p. 133172. In Grande, L. and Rieppel, O. (eds.), Interpreting the Hierarchy of Nature: From Systematic Patterns to Evolutionary Process Theories. Academic Press, London.Google Scholar
Fisher, D. C. 2008. Stratocladistics: Integrating geologic and biologic data in phylogenetic inference. Annual Review of Ecology, Evolution, and Systematics, 39: (to be published December, 2008).CrossRefGoogle Scholar
Foote, M. and Miller, A. I. 2007. Principles of Paleontology, Third Edition. W. H. Freeman and Company, New York, 354 pp.Google Scholar
Frolich, M. W. and Chase, M. W. 2007. After a dozen years of progress the origin of angiosperms is still a great mystery. Nature, 450:11841189.CrossRefGoogle Scholar
Garrels, R. M. and Lerman, A. 1984. Coupling of the sedimentary sulfur and carbon cycles — an improved model. American Journal of Science 284:9891007.CrossRefGoogle Scholar
Gensel, P. G. and Edwards, D. (eds.) 2001. Plants Invade the Land, Columbia University Press, New York. 304 p.CrossRefGoogle Scholar
Glaessner, M. F. 1959. Precambrian Coelenterata from Australia, South Africa and England. Nature 183:14721473.CrossRefGoogle Scholar
Glen, W. (ed.). 1994. Mass-Extinction Debates: How Science Works in a Crisis. Stanford University Press, Palo Alto, California. 388 p.Google Scholar
Gould, S. J. 1977. Eternal metaphors of palaeontology, p. 126. In Hallam, A. (ed.) Patterns of Evolution As Illustrated By the Fossil Record, Elsevier, New York.Google Scholar
Gould, S. J. 1989. Wonderful Life: The Burgess Shale and the Nature of History. Norton, Ne York. 347 p.Google Scholar
Gould, S. J. 2002. The Structure of Evolutionary Theory. Belknap Press of Harvard University Press, Cambridge, Massachusetts. 1433 p.Google Scholar
Gradstein, F. M., Ogg, J. G., and Smith, A. G. (eds.). 2004. A Geologic Time Scale 2004. Cambridge University Press, Cambridge, U. K. 589 p.CrossRefGoogle Scholar
Hallam, A. and Wignall, P. B. 1997. Mass Extinctions and Their Aftemath. Oxford University Press, Oxford, U. K. 320 p.Google Scholar
Hallam, A. 2005. Catastrophes and Lesser Calamities: The Causes of Mass Extinction. Oxford University Press, Oxford, U. K. 240 p.Google Scholar
Hammer, Ø and Harper, D. A. T. 2006. Paleontological Data Analysis. Blackwell Publishing, Maiden, Massachusetts. 351 p.Google Scholar
Harland, W. B., Holland, C. H., House, M. R., Hughes, N. F., Reynolds, A. B., Rudwick, M. J. S., Satterthwaitee, G. E., Tarlo, L. B. H., and Willey, E. C. (eds.). 1967. The Fossil Record. Geological Society of London, London. 827 pp.Google Scholar
Harper, D. A. T. (ed.). 1999. Numerical Palaeobiology—Computer-based Modeling and Analysis of Fossils and their Distribution. John Wiley and Sons, Chichester, U. K. 468 p.Google Scholar
Harries, P. J. (ed.). 2003. High-Resolution Approaches in Stratigraphic Paleontology. Kluwer Academic Publishers, Dordrecht, Netherlands. 474 p.Google Scholar
Hedgpeth, J. W. (ed.). 1957. Treatise on Marine Ecology and Paleoecology, Volume 1, Ecology. The Geological Society of America Memoir 67. 1296 p.Google Scholar
Hennig, W. 1950. Gründzuge einer Theorie der phylogenetischen Systematik. Deutscher Zentralverlag, Berlin. 370 p.Google Scholar
Hennig, W. 1966. Phylogenetic Systematics. Translated by Davis, D. D. and Zangerl, R. Univeristy of Illinois Press, Urbana, Illinois. 263 p.Google Scholar
Hou, X.-G., Aldridge, R. J., Bergström, J., Siveter, D. J., and Feng, X.-H. 2004. The Cambrian fossils of Chengjiang, China. Blackwell Publishing, Maiden, Massachusetts, xii + 233 pp.Google ScholarPubMed
Imbrie, J. 1956. Biometrical methods in the study of invertebrate fossils. Bulletin of the American Museum of Natural History, 108:211252.Google Scholar
Imbrie, J. and Newell, N. (eds.) Approaches to Paleoecology. John Wiley and Sons, Inc., New York. 432 p.Google Scholar
Johanson, D. and Edgar, B. 2006. From Lucy to Language, Revised, Updated, and Expanded. Simon and Schuster, New York. 288 p.Google Scholar
Johnson, R. G. 1960. Models and methods for analysis of the mode of formation of fossil assemblages. Geological Society of America Bulletin, 71:10751085.CrossRefGoogle Scholar
Kidwell, S. M. 2001. Preservation of species abundance in marine death assemblages. Science, 294:10911094.CrossRefGoogle ScholarPubMed
Kidwell, S. M. and Berensmeyer, A. K. (eds.). 1993. Taphonomic Approaches to Tim Resolution in Fossil Assemblages. The Paleontological Society, Short Courses in Paleontology Number 6. 302 p.Google Scholar
Kidwell, S. M. and Holland, S. M. 2002. The quality of the fossil record: Implications for evolutionary analysis. Annual Reviews of Ecology and Systematics, 33:561588.CrossRefGoogle Scholar
Klein, R.G. 1999. The Human Career: Human Biological and Cultural Evolution, Second Edtion. University of Chicago Press, Chicago, Illinois. 810 p.Google Scholar
Knoll, A. H. 2003. Life on a Young Planet: The First Three Billion Years of Evolution on Earth. Princeton University Press, Princeton, New Jersey. 277 pp.Google Scholar
Knoll, A. H., Bambach, R. K., Payne, J. L., Pruss, S., and Fischer, W. W. 2007. Paleophysiology and end-Permian mass extinction. Earth and Planetary Science Letters, 256:295313.CrossRefGoogle Scholar
Kowalewski, M., Kiessling, W., Aberhan, M., Fürsich, F. T., Scarponi, D., Barbour Wood, S. L., and Hoffmeister, A. P. 2006. Ecological, taxonomic and taphonomic components of the post-Paleozoic increase in sample-level species diversity of marine benthos. Paleobiology, 32:533561.CrossRefGoogle Scholar
Ladd, H. S. (ed). 1957. Treatise on Marine Ecology and Paleoecology, Volume 2, Paleoecology. The Geological Society of America Memoir 67. P. 1077 p.Google Scholar
Luo, Z.-X. 2007. Transformation and diversification in early mammal evolution. Nature, 450:10111019.CrossRefGoogle ScholarPubMed
Marcot, J. D. and Fox, D. L. 2008. StataPhy: A new computer program for stratocladistic analysis. Palaeontologia Electronica 11.1.5A.Google Scholar
Martin, R. E. 1999. Taphonomy: A Process Approach. Cambridge Univeristy Press, New York. 508 p.CrossRefGoogle Scholar
McBrearty, S. and Brooks, A. S. 2000. The revolution that wasn't: A new interpretation of the origin of modern human behavior. Journal of Human Evolution, 39:453563.CrossRefGoogle ScholarPubMed
McGhee, G. R. Jr. 1998. Theoretical Morphology: The Concept and Its Applications. Columbia University Press, New York. 316 p.Google Scholar
McGhee, G. R. Jr. 2007. The Geometry of Evolution: Adaptive Landscapes and Theoretical Morphospaces. Cambridge University Press, Cambridge, U. K. 200 p.Google Scholar
McIlroy, D. (ed.) 2004. The Application of Ichnology to Palaeoenvironmental and Stratigraphic Analysis. Geological Society Special Publication No. 228. The Geological Society, London. 490 p.Google Scholar
Miller, W. C. 2007. Trace Fossils: Concepts, Problems, Prospects. Elsevier, Amsterdam. 611 p.Google Scholar
Mitchell, P. C. 1910. Evolution, p. 2237. In The Encyclopædia Britannica, Eleventh Edition. Volume X Evangelical Church to Francis Joseph. The Encyclopædia Britannica Company, New York.Google Scholar
Moore, R. C. (ed.). 1953–2007. Treatise on Invertebrate Paleontology. [multi-volume work, additional editors in more recent years] The Geological Society of America, University of Kansas Press, Lawrence, Kansas.Google Scholar
Moore, R. C., Lalicker, C. G., and Fischer, A. G. 1952. Invertebrate Fossils. McGraw-Hill, New York. 766 pp.Google Scholar
Newell, N. D. 1953. Review of Invertebrate Fossils and Principles of Invertebrate Paleontology. Evolution, 7:193–185.CrossRefGoogle Scholar
Newell, N. D., Bradley, J. S., and Whiteman, A. J. 1951. Shoal-water geology and environments, eastern Andros Island, Bahamas. Bulletin of the American Museum of Natural History 97:129.Google Scholar
Newell, N. D., Bradley, J. S., Whiteman, A. J., and Fischer, A. G. 1953. The Permian Reef Complex of the Guadalupe Mountains region, Texas and New Mexico: A Study in Paleoeocology. W. H. Freeman, San Francisco. 236 p.Google Scholar
Niklas, K. J. 1997. The Evolutionary Biology of Plants. University of Chicago Press, Chicago, Illinois. 449 p.Google Scholar
Osborn, H. F. 1902. The law of adaptive radiation. The American Naturalist, 36:353363.CrossRefGoogle Scholar
Parrish, J. T. 1998. Interpreting Pre-Quaternary Climate from the Geologic Record. Columbia University Press, New York. 338 p.Google Scholar
Patterson, C. 1981. Significance of fossils in determining evolutionary relationships. Annual Reviews of Ecology and Systematics, 12:195223.CrossRefGoogle Scholar
Powell, E. N., Parsons-Hubbard, K. M., Callender, W. R., Staff, G. M., Rowe, G. T., Brett, C. E., Walker, S. E., Raymond, A., Carlson, D. D., White, S., and Heise, E. A. 2002. Taphonomy on the continental shelf and slope: Two-year trends—Gulf of Mexico and Bahamas. Palaeogeography, Palaeoclimatology, Palaeoecology, 184:135.CrossRefGoogle Scholar
Raup, D. M. 1966. Geometric analysis of shell coiling: General problems. Journal of Paleontology, 40:11781190.Google Scholar
Raup, D. M. and Seilacher, A. 1969. Fossil foraging behavior. Science 166:994995.CrossRefGoogle ScholarPubMed
Raup, D. M. and Stanley, S. M. 1971. Principles of Paleontology. W. H. Freeman and Company, San Francisco, California. 388 p.Google Scholar
Raup, D. M. and Stanley, S. M. 1978. Principles of Paleontology, Second Edition. W. H. Freeman and Company, San Francisco, California. 481 p.Google Scholar
Ruddiman, W. F., Raymo, M., and McIntyre, A. 1986. Matuyama 41,000 year cycles: North Atlantic Ocean and northern hemisphere ice sheets. Earth and Planetary Science Letters, 80:117129.CrossRefGoogle Scholar
Rudwick, M. J. S. 1964. The function of zigzag deflexions in the commissures of fossil brachiopods. Palaeontology, 7:135171.Google Scholar
Sarmiento, E., Sawyer, G. J., Deak, V., and Milner, R. 2007. The Last Human: A Guide to Twenty-two Species of Extinct Humans. Yale University Press, New Haven, Connecticut. 256 p.Google Scholar
Schäfer, W. 1962. Aktuo-Paläontologie nach Studien in der Nordsee. W. Kramer, Frankfurt am Main, Germany. 666 pp.Google Scholar
Schäfer, W. 1972. Ecology and paleoecology of marine environments. Translated by Oertel, I., edited by Craig, G. Y. University of Chicago Press, Chicago. 568 pp.Google Scholar
Schoch, R. M. 1986. Phylogeny Reconstruction in Paleontology. Van Nostrand Reinhold, New York. 353 p.Google Scholar
Schopf, T. J. M. (ed.) 1972. Models in Paleobiology. Freeman, Cooper and Company, San Francisco, California. 250 p.Google Scholar
Seilacher, A. 1967a. Fossil behavior. Scientific American 217(2):7280.CrossRefGoogle Scholar
Seilacher, A. 1967b. Bathymetry of trace fossils. Marine Geology 5:413428.CrossRefGoogle Scholar
Seilacher, A, Buatois, L. A. and Mangano, M. G. 2005. Trace fossils in the Ediacaran-Cambrian transition: behavioral diversification, ecological turnover, and environmental shift. Palaeogeography, Palaeoclimatology, Palaeoecology, 227:323356.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1981. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology, 7:3653.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1982. A compendium of fossil marine families. Milwaukee Public Museum Contributions in Biology and Geology Number 51:1125.Google Scholar
Sepkoski, J. J. 2002. A Compendium of Fossil Marine Animal Genera. (Jablonski, D, Foote, M, eds.) Bulletins of American Paleontology, 363:1560.Google Scholar
Sepkoski, J. J. Jr., Bambach, R. K., Raup, D. M., and Valentine, J. W. 1981. Phanerozoic marine diversity and the fossil record. Nature, 293:435437.CrossRefGoogle Scholar
Shaw, A. B. 1964. Time in Stratigraphy. MCGraw-Hill, New York. 365 p.Google Scholar
Shen, Y., Buick, R., and Canfield, D. 2001. Isotopic evidence for microbial sulphate reduction in the early Archaean ocean. Nature, 410:7781.CrossRefGoogle Scholar
Shrock, R. R. and Twenhofel, W. H. 1953. Principles of Invertebrate Paleontology. McGraw-Hill, New York. 816 p.Google Scholar
Shubin, N. H., Daeschler, E. B., and Jenkins, F. A. Jr. 2006. The pectoral fin of Tiktaalik roseae and the origin of the tetrapod limb. Nature, 440:765771.CrossRefGoogle ScholarPubMed
Simpson, G. G. 1944. Tempo and Mode in Evolution. Columbia University Press, New York. 237 p.Google Scholar
Smith, A. B. 1994. Systematics and the Fossil Record. Blackwell Scientific, London. 223 pp.CrossRefGoogle ScholarPubMed
Sprigg, R. C. 1947. Early Cambrian (?) jellyfishes from the Flinders Ranges, South Australia. Transactions of the Royal Society of South Australia, 71:212224.Google Scholar
Springer, D. A. 1997. Geology in the popular press: Paleontology's greatest hits. Geotimes, 42(3):2023.Google Scholar
Stanley, S. M. 1970. Relation of Shell Form to Life Habits in the Bivalvia (Mollusca). Geological Society of America Memoir Number 125.Google Scholar
Stanley, S. M. 1973. An explanation for Cope's Rule. Evolution, 27:126.CrossRefGoogle ScholarPubMed
Stanley, S. M. 1975. A theory of evolution above the species level. Proceedings of the National Academy of Science (U. S. A.) 72:646650.CrossRefGoogle ScholarPubMed
Stanley, S. M. 1979. Macroevolution: Pattern and Process. W. H. Freeman, San Francisco, 332 pp.Google Scholar
Stewart, W. N. and Rothwell, G. W. 1993. Paleobotany and the Evolution of Plants, Second Edition. Cambridge University Press, New York. 521 p.Google Scholar
Takashima, R., Nishi, H., Huber, B.T., and Leckie, R. M. 2006. Greenhouse world and the Mesozoic Ocean. Oceanography, 19:8292.CrossRefGoogle Scholar
Tattersall, I. 1995. The Fossil Trail: How We Know What We Think We Know about Human Evolution. Oxford University Press, New York. 276 p.Google Scholar
Taylor, P. D. (ed.). 2004. Extinctions in the History of Life. Cambridge University Press, Cambridge, U.K. 191 p.CrossRefGoogle Scholar
Tevesz, M. J. S. and McCall, P. M. (eds.) 1983. Biotic Interactions in Recent and Fossil Benthic Communities. Plenum Press, New York. 837 p.CrossRefGoogle Scholar
Tyler, S. A. and Barghoorn, E. S. 1954. Occurrence of structurally preserved plants in Pre-Cambrian rocks of the Canadian Shield. Science, 119:606608.CrossRefGoogle ScholarPubMed
Valentine, J. W. 1966. Numerical analysis of marine molluscan ranges on the extratropical northeastern Pacific shelf. Limnology and Oceanography, 11:198211.CrossRefGoogle Scholar
Valentine, J. W. 1973. Evolutionary Paleoecology of the Marine Biosphere. Prentice-Hall, Inc., Englewood Cliffs, New Jersey. 511 p.Google Scholar
Vermeij, G. J. 1987. Evolution and Escalation: An Ecological History of Life. Princeton University Press, Princeton, New Jersey. 527 p.Google Scholar
Wagner, P. J., Kosnik, M. A., and Lidgard, S. 2006. Abundance distributions imply elevated complexity of post-Paleozoic marine ecosystems. Science 314:12891292.CrossRefGoogle ScholarPubMed
Webby, B. D., Paris, F., Droser, M. L., and Percival, I. G. (eds.). 2004. The Great Ordovician Biodiversification Event. Columbia University Press, New York. 484 p.CrossRefGoogle Scholar
Weishampel, D. B., Dodson, P., and Osmólska, H. (eds.) 2004. The Dinosauria, Second Edition. University of California Press, Berkeley, California. 861 p.CrossRefGoogle Scholar
Whittington, H. B. 1985. The Burgess Shale. Yale University Press, New Haven. 151 p.Google Scholar
Xiao, S. and Kaufman, A. J. (eds.). 2006. Neoproterozoic Geobiology and Paleobiology. Topics in Geobiology, Volume 27. Springer, Dordrecht, The Netherlands. 300 p.CrossRefGoogle Scholar
Zhuravlev, A. Y. and Riding, R. (eds.). 2001. The Ecology of the Cambrian Radiation. Columbia University Press, New York. 525 p.Google Scholar
Ziegler, A. M. 1965. Silurian marine communities and their environmental significance. Nature, 207:270272.CrossRefGoogle Scholar
Ziegler, A. M., Cocks, L. R. M., and Bambach, R. K. 1968. The composition and structure of Lower Silurian marine communities. Lethaia, 1:127.CrossRefGoogle Scholar
Zittel, K. A. Von. 1896. Textbook of Paleontology, Volume 1 [Invertebrates]. Translated and edited by Eastman, C. R. Macmillan and Company, New York. 706 p.Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Paleontology's Greatest Hits
Available formats

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Paleontology's Greatest Hits
Available formats

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Paleontology's Greatest Hits
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *