Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-jg9p7 Total loading time: 0.489 Render date: 2021-09-17T04:22:59.614Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Fossil Angiosperm Leaves: Paleobotany's Difficult Children Prove Themselves

Published online by Cambridge University Press:  21 July 2017

Peter Wilf*
Affiliation:
Department of Geosciences Pennsylvania State University 537 Deike Building University Park, PA 16802
Get access

Abstract

The great bulk of the angiosperm fossil record consists of isolated fossil leaves that preserve abundant shape and venation (leaf architectural) information but are difficult to identify because they are not attached to other plant organs. Thus, poor taxonomic knowledge has tempered the tremendous potential of fossil leaves for constructing finely resolved records of biodiversity through time, extinction and recovery, past climate change and biotic response, paleoecology, and plant-animal associations. Moreover, paleoecological and paleoclimatic interpretations of fossil leaves are in great need of new approaches. Recent work is rapidly increasing the scientific value of fossil angiosperm leaves through advances in traditional paleobotanical reconstruction, phylogenetic understanding of both leaf architecture and the response of leaf shape to climate, quantitative plant ecology using measurable, correlatable leaf traits, and improved understanding of insect leaf-feeding damage. These emerging areas offer many novel opportunities to link paleoecology and neoecology. Increased collaboration across traditionally separate research areas is critical to continued success.

Type
Research Article
Copyright
Copyright © by the Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackerly, D. D. and Reich, P. B. 1999. Convergence and correlations among leaf size and function in seed plants: a comparative test using independent contrasts. American Journal of Botany, 86:12721281.CrossRefGoogle Scholar
Aizen, M. A. and Ezcurra, C. 2008. Do leaf margins of the temperate forest flora of southern South America reflect a warmer past? Global Ecology and Biogeography, 17:164174.CrossRefGoogle Scholar
Alroy, J. 1998. Cope's Rule and the dynamics of body mass evolution in North American fossil mammals. Science, 280:731734.CrossRefGoogle ScholarPubMed
ANGIOSPERM PHYLOGENY GROUP. 2003. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Botanical Journal of the Linnean Society, 141:399436.CrossRefGoogle Scholar
Ash, A. W., Ellis, B., Hickey, L. J., Johnson, K. R., Wilf, P., and Wing, S. L. 1999. Manual of Leaf Architecture: Morphological Description and Categorization of Dicotyledonous and Net-Veined Monocotyledonous Angiosperms. Smithsonian Institution, Washington, D.C., www.peabody.yale.edu/collections/pb/MLA.pdf.Google Scholar
Bailey, I. W. and Sinnott, E. W. 1915. A botanical index of Cretaceous and Tertiary climates. Science, 41:831834.CrossRefGoogle ScholarPubMed
Basset, Y. and Höft, R. 1994. Can apparent leaf damage in tropical trees be predicted by herbivore load or host-related variables? A case study in Papua New Guinea. Selbyana, 15:313.Google Scholar
Berry, E. W. 1925. A Miocene flora from Patagonia. Johns Hopkins University Studies in Geology, 6:183251.Google Scholar
Berry, E. W. 1937. A Paleocene flora from Patagonia. Johns Hopkins University Studies in Geology, 12:3350.Google Scholar
Berry, E. W. 1938. Tertiary flora from the Río Pichileufú, Argentina. Geological Society of America Special Paper, 12:1149.CrossRefGoogle Scholar
Boucher, L. D., Manchester, S. R., and Judd, W. S. 2003. An extinct genus of Salicaceae based on twigs with attached flowers, fruits, and foliage from the Eocene Green River Formation of Utah and Colorado, USA. American Journal of Botany, 90:13891399.CrossRefGoogle ScholarPubMed
Burnham, R. J., Pitman, N. C. A., Johnson, K. R., and Wilf, P. 2001. Habitat-related error in estimating temperatures from leaf margins in a humid tropical forest. American Journal of Botany, 88:10961102.CrossRefGoogle Scholar
Cariglino, B. 2007. Paleoclimatic analysis of the Eocene Laguna del Hunco, Green River, and Republic floras using digital leaf physiognomy. , Pennsylvania State University, 104 p.Google Scholar
Carr, D. J., Carr, S. G. M., and Lenz, J. R. 1986. Leaf venation in Eucalyptus and other genera of Myrtaceae: implications for systems of classification of venation. Australian Journal of Botany, 34:5362.CrossRefGoogle Scholar
Coley, P. D. 1983. Herbivory and defensive characteristics of tree species in a lowland tropical forest. Ecological Monographs, 53:209233.CrossRefGoogle Scholar
Coley, P. D., and Barone, J. A. 1996. Herbivory and plant defenses in tropical forests. Annual Review of Ecology and Systematics, 27:305335.CrossRefGoogle Scholar
Crane, P. R. and Stockey, R. A. 1985. Growth and reproductive biology of Joffrea speirsii gen. et sp. nov., a Cercidiphyllum-like plant from the Late Paleocene of Alberta, Canada. Canadian Journal of Botany, 63:340364.CrossRefGoogle Scholar
Crane, P. R., Manchester, S. R., and Dilcher, D. L. 1990. A preliminary survey of fossil leaves and well-preserved reproductive structures from the Sentinel Butte Formation (Paleocene) near Almont, North Dakota. Fieldiana Geology, 20:163.Google Scholar
Crane, P. R., Manchester, S. R., and Dilcher, D. L. 1991. Reproductive and vegetative structure of Nordenskioldia (Trochodendraceae), a vesselless dicotyledon from the Early Tertiary of the Northern Hemisphere. American Journal of Botany, 78:13111334.CrossRefGoogle Scholar
Currano, E. D., Wilf, P., Wing, S. L., Labandeira, C. C., Lovelock, E. C., and Royer, D. L. 2008. Sharply increased insect herbivory during the Paleocene-Eocene thermal maximum. Proceedings of the National Academy of Sciences USA, 105:19601964.CrossRefGoogle ScholarPubMed
Danehy, D. R., Wilf, P., and Little, S. A. 2007. Early Eocene macroflora from the Red Hot Truck Stop locality (Meridian, Mississippi, USA). Palaeontologia Electronica 10:article 10.3.17A, palaeoelectronica.org/2007_3/132/index.html.Google Scholar
Dilcher, D. L. 1974. Approaches to the identification of angiosperm leaf remains. Botanical Review, 40:1157.CrossRefGoogle Scholar
Dilcher, D. L. and Lott, T. A. 2005. A middle Eocene fossil plant assemblage (Powers Clay Pit) from western Tennessee. Florida Museum of Natural History Bulletin, 45:143.Google Scholar
Dimichele, W. A. and Gastaldo, R. A. 2008. Plant paleoecology in deep time. Annals of the Missouri Botanical Garden, 95:144198.CrossRefGoogle Scholar
Doyle, J. A. 2007. Systematic value and evolution of leaf architecture across the angiosperms in light of molecular phylogenetic analyses. Courier Forschungsinstitut Senckenberg, 258:37.Google Scholar
Doyle, J. A. and Endress, P. K. 2000. Morphological phylogenetic analysis of basal angiosperms: comparison and combination with molecular data. International Journal of Plant Sciences, 161:S121S153.CrossRefGoogle Scholar
Eklund, H., Doyle, J. A., and Herendeen, P. S. 2004. Morphological phylogenetic analysis of living and fossil Chloranthaceae. International Journal of Plant Sciences 165:107151.CrossRefGoogle Scholar
Ellis, B., Daly, D., Hickey, L. J., Johnson, K. R., Mitchell, J., Wilf, P., and Wing, S. L. 2009. Manual of Leaf Architecture. Cornell University Press, Ithaca, in press.Google Scholar
Friedrich, W. L. and Schaarschmidt, F. 1979. Epi fluorescence of fossil plants. Zeiss-information 24:1618.Google Scholar
Fuller, D. Q. and Hickey, L. J. 2005. Systematics and leaf architecture of the Gunneraceae. Botanical Review, 71:295353.CrossRefGoogle Scholar
Gandolfo, M. A. and Romero, E. J. 1992. Leaf morphology and a key to species of Nothofagus Bl. Bulletin of the Torrey Botanical Club, 119:152166.CrossRefGoogle Scholar
Gandolfo, M. A., González, C. C., Zamaloa, M. C., Cúneo, N. R., and Wilf, P. 2006. Eucalyptus (Myrtaceae) macrofossils from the early Eocene of Patagonia, Argentina. Botanical Society of America Annual Meeting, Chico, CA, abstract 473.Google Scholar
Gandolfo, M. A., Zamaloa, M. C., Gonzalez, C. C., Cúneo, N. R., Wilf, P., and Johnson, K. R. 2007. Bixaceae: a tropical component of the early Eocene Laguna del Hunco paleoflora, Chubut, Patagonia, Argentina. Geological Society of America Abstracts with Programs, 39:585.Google Scholar
Gentry, A. H. 1993. A field guide to the families and genera of woody plants of northwest South America (Colombia, Ecuador, Peru), with supplementary notes on herbaceous taxa. Conservation International, Washington, DC.Google Scholar
Gonzalez, C. C., Gandolfo, M. A., and Cúneo, N. R. 2004. Leaf architecture and epidermal characters of the Argentinean species of Proteaceae. International Journal of Plant Sciences, 165:521526.CrossRefGoogle Scholar
Gonzalez, C. C., Gandolfo, M. A., Cúneo, N. R., Wilf, P., and Johnson, K. R. 2007. Revision of the Proteaceae macrofossil record from Patagonia, Argentina. Botanical Review, 73:235266.CrossRefGoogle Scholar
Green, W. A. and Little, S. A. 2007. Leaf characters across families and orders of angiosperms: testing the utility of Compendium Index Categories for taxonomic identification and phylogenetic analysis of modern cleared leaves. Botanical Society of America Annual Meeting, Chicago, abstract 2165.Google Scholar
Greenwood, D. R. 2007. Fossil angiosperm leaves and climate: from Wolfe and Dilcher to Burnham and Wilf. Courier Forschungsinstitut Senckenberg, 258:95108.Google Scholar
Greenwood, D. R., Wilf, P., Wing, S. L., and Christophel, D. C. 2004. Paleotemperature estimation using leaf-margin analysis: is Australia different? Palaios, 19:129142.2.0.CO;2>CrossRefGoogle Scholar
Hickey, L. J. 1973. Classification of the architecture of dicotyledonous leaves. American Journal of Botany, 60:1733.CrossRefGoogle Scholar
Hickey, L. J. 1977. Stratigraphy and paleobotany of the Golden Valley Formation (Early Tertiary) of western North Dakota. GSA Memoir, 150:1183.Google Scholar
Hickey, L. J. and Taylor, D. W. 1991. The leaf architecture of Ticodendron and the application of foliar characters in discerning its relationships. Annals of the Missouri Botanical Garden, 78:105130.CrossRefGoogle Scholar
Hickey, L. J. and Wolfe, J. A. 1975. The bases of angiosperm phylogeny: vegetative morphology. Annals of the Missouri Botanical Garden, 62:538589.CrossRefGoogle Scholar
Hill, R. S. 1982. The Eocene megafossil flora of Nerriga, New South Wales, Australia. Palaeontographica Abteilung B: Palaeophytologie, 181:4477.Google Scholar
Hubbell, S. P. 2001. The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton, 396 p.Google Scholar
Huff, P. M., Wilf, P., and Azumah, E. J. 2003. Digital future for paleoclimate estimation from fossil leaves? Preliminary results. Palaios 18:266274.2.0.CO;2>CrossRefGoogle Scholar
Iglesias, A., Wilf, P., Johnson, K. R., Zamuner, A. B., Cúneo, N. R., Matheos, S. D., and Singer, B. S. 2007. A Paleocene lowland macroflora from Patagonia reveals significantly greater richness than North American analogs. Geology, 35:947950.CrossRefGoogle Scholar
Iglesias, A., Wilf, P., Gandolfo, M. A., Little, S. A., Johnson, K. R., Zamuner, A., Labandeira, C. C., and Cúneo, N. R. 2008a. Paleocene Patagonian floras: in situ cuticles complement architectural data from leaf compressions of Podocarpaceae, Lauraceae, and Nothofagaceae. Botanical Society of America Annual Meeting, Vancouver, abstract 449.Google Scholar
Iglesias, A., Little, S. A., Wilf, P., and Gandolfo, M. A. 2008b. An early Paleocene flower related to Resedaceae (Brassicales) bearing in situ pollen and cuticle from Patagonia, Argentina. International Organization of Paleobotany, VIIIth Quadrennial Conference, Bonn, Germany, Abstracts.Google Scholar
Johnson, K. R., Nichols, D. J., Attrep, M. Jr., and Orth, C. J. 1989. High-resolution leaf-fossil record spanning the Cretaceous-Tertiary boundary. Nature, 340:708711.CrossRefGoogle Scholar
Johnson, W. T. and Lyon, H. H. 1991. Insects that Feed on Trees and Shrubs, 2 ed. Cornell University Press, Ithaca, 560 p.Google Scholar
Jordan, G. J. 1996. Eocene continental climates and latitudinal temperature gradients: Comment. Geology, 24:1054.2.3.CO;2>CrossRefGoogle Scholar
Keating, R. C. and Randrianasolo, V. 1988. The contribution of leaf architecture and wood anatomy to classification of the Rhizophoraceae and Anisophylleaceae. Annals of the Missouri Botanical Garden, 75:13431368.CrossRefGoogle Scholar
Keller, R. 2004. Identification of Tropical Woody Plants in the Absence of Flowers: a Field Guide, 2 ed. Birkhäuser Verlag, Basel, 294 p.CrossRefGoogle Scholar
Kerp, H. and Krings, M. 1999. Light microscopy of cuticles. p. 5256. In Jones, T. P. and Rowe, N. P., eds., Fossil plants and spores: modern techniques. Geological Society, London.Google Scholar
Labandeira, C. C. 2002. Paleobiology of middle Eocene plant-insect associations from the Pacific Northwest: a preliminary report. Rocky Mountain Geology, 37:3159.CrossRefGoogle Scholar
Labandeira, C. C. 2005. The fossil record of insect extinction: new approaches and future directions. American Entomologist, 51:1025.CrossRefGoogle Scholar
Labandeira, C. C., Johnson, K. R., and Wilf, P. 2002a. Impact of the terminal Cretaceous event on plant-insect associations. Proceedings of the National Academy of Sciences USA, 99:20612066.CrossRefGoogle Scholar
Labandeira, C. C., Johnson, K. R., and Lang, P. 2002b. Preliminary assessment of insect herbivory across the Cretaceous-Tertiary boundary: major extinction and minimum rebound. Geological Society of America Special Paper 361:297327.Google Scholar
Labandeira, C. C., Wilf, P., Johnson, K. R., and Marsh, F. 2007. Guide to Insect (and other) Damage Types on Compressed Plant Fossils. Version 3.0. Smithsonian Institution, Washington, D.C., paleobiology.si.edu/insects/index.html.Google Scholar
Little, S. A., Kembel, S., Wilf, P., and Royer, D. L. 2008. Phylogenetic signal in leaf traits and its influence on leaf-climate correlations. Botanical Society of America Annual Meeting, Vancouver, abstract 626.Google Scholar
Liu, Y. 1996. Foliar architecture of Betulaceae and a revision of Chinese betulaceous megafossils. Palaeontographica Abteilung B: Palaeophytologie, 239:2357.Google Scholar
Macginitie, H. D. 1969. The Eocene Green River flora of northwestern Colorado and northeastern Utah. University of California Publications in Geological Sciences, 83:1140.Google Scholar
Manchester, S. R. 1989. Attached reproductive and vegetative remains of the extinct American-European genus Cedrelospermum (Ulmaceae) from the early Tertiary of Utah and Colorado. American Journal of Botany, 76:256276.CrossRefGoogle Scholar
Manchester, S. R. 2001. Update on the megafossil flora of Florissant, Colorado. Proceedings of the Denver Museum of Nature & Science, Series 4 1:137162.Google Scholar
Manchester, S. R., Dilcher, D. L., and Tidwell, W. D. 1986. Interconnected reproductive and vegetative remains of Populus (Salicaceae) from the middle Eocene Green River Formation, northeastern Utah. American Journal of Botany, 73:156160.CrossRefGoogle Scholar
Manchester, S. R., Dilcher, D. L., and Wing, S. L. 1998. Attached leaves and fruits of myrtaceous affinity from the middle Eocene of Colorado. Review of Palaeobotany and Palynology, 102:153163.CrossRefGoogle Scholar
Manchester, S. R., Crane, P. R., and Golovneva, L. B. 1999. An extinct genus with affinities to extant Davidia and Camptotheca (Cornales) from the Paleocene of North America and eastern Asia. International Journal of Plant Sciences, 160:188207.CrossRefGoogle Scholar
Manchester, S. R. and Hickey, L. J. 2007. Reproductive and vegetative organs of Browniea gen. n. (Nyssaceae) from the Paleocene of North America. International Journal of Plant Sciences, 168:229249.CrossRefGoogle Scholar
Manos, P. S., Soltis, P. S., Soltis, D. E., Manchester, S. R., Oh, S. H., Bell, C. D., Dilcher, D. L., and Stone, D. E. 2007. Phylogeny of extant and fossil Juglandaceae inferred from the integration of molecular and morphological data sets. Systematic Biology, 56:412430.CrossRefGoogle Scholar
Martianez-Millán, M. and Cevallosferriz, S. R. S. 2005. Arquitectura foliar de Anacardiaceae. Revista Mexicana de Biodiversidad, 76:137190.Google Scholar
McGill, B. J., Enquist, B. J., Weiher, E., and Westoby, M. 2006. Rebuilding community ecology from functional traits. Trends in Ecology & Evolution, 21:178185.CrossRefGoogle ScholarPubMed
Mosbrugger, V. and Utescher, T. 1997. The coexistence approach - a method for quantitative reconstructions of Tertiary terrestrial palaeoclimate data using plant fossils. Palaeogeography, Palaeoclimatology, Palaeoecology, 134:6186.CrossRefGoogle Scholar
Premoli, A. C. 1996. Leaf architecture of South American Nothofagus (Nothofagaceae) using traditional and new methods in morphometrics. Botanical Journal of the Linnean Society, 121:2540.Google Scholar
Reich, P. B., Uhl, C., Walters, M. B., and Ellsworth, D. S. 1991. Leaf lifespan as a determinant of leaf structure and function among 23 Amazonian tree species. Oecologia, 86:1624.CrossRefGoogle ScholarPubMed
Reich, P. B., Walters, M. B., and Ellsworth, D. S. 1997. From tropics to tundra: Global convergence in plant functioning. Proceedings of the National Academy of Sciences USA, 94:1373013734.CrossRefGoogle ScholarPubMed
Reich, P. B., Ellsworth, D. S., Walters, M. B., Vose, J. M., Gresham, C., Volin, J. C., and Bowman, W. D. 1999. Generality of leaf trait relationships: a test across six biomes. Ecology, 80:19551969.CrossRefGoogle Scholar
Royer, D. L. 2008. Nutrient turnover rates in ancient terrestrial ecosystems. Palaios, 23:421423.CrossRefGoogle Scholar
Royer, D. L., Wilf, P., Janesko, D. A., Kowalski, E. A., and Dilcher, D. L. 2005. Correlations of climate and plant ecology to leaf size and shape: potential proxies for the fossil record. American Journal of Botany, 92:11411151.CrossRefGoogle Scholar
Royer, D. L., Sack, L., Wilf, P., Lusk, C. H., Jordan, G. J., Niinemets, Ü, Wright, I. J., Westoby, M., Cariglino, B., Coley, P. D., Cutter, A. D., Johnson, K. R., Labandeira, C. C., Moles, A. T., Palmer, M. B., and Valladares, F. 2007. Fossil leaf economics quantified: calibration, Eocene case study, and implications. Paleobiology, 33:574589.CrossRefGoogle Scholar
Royer, D. L., McElwain, J. C., Adams, J. M., and Wilf, P. 2008. Sensitivity of leaf size and shape to climate within Acer rubrum and Quercus kelloggii . New Phytologist, 179: 808817.CrossRefGoogle Scholar
Russo, R. 2007. Field Guide to Plant Galls of California and other Western States. University of California Press, Berkeley, 400 p.Google Scholar
Sarzetti, L., Labandeira, C. C., and Genise, J. 2008. A leafcutter bee trace fossil from the middle Eocene of Patagonia, Argentina, and a review of megachilid (Hymenoptera) ichnology. Palaeontology 51:933941.CrossRefGoogle Scholar
Schaarschmidt, F. 1982. Präparation und Untersuchung der Eozänen Pflanzenfossilen von Messel bei Darmstadt. Courier Forschungsinstitut Senckenberg, 56:5977.Google Scholar
Scharaschkin, T. and Doyle, J. A. 2005. Phylogeny and historical biogeography of Anaxagorea (Annonaceae) using morphology and non-coding chloroplast sequence data. Systematic Botany, 30:712735.CrossRefGoogle Scholar
Schouten, S., Eldrett, J., Greenwood, D. R., Harding, I., Baas, M., and Damsté, J. S. S. 2008. Onset of long-term cooling of Greenland near the Eocene-Oligocene boundary as revealed by branched tetraether lipids. Geology, 36:147150.CrossRefGoogle Scholar
Secord, R., Gingerich, P. D., Smith, M. E., Clyde, W. C., Wilf, P., and Singer, B. S. 2006. Geochronology and mammalian biostratigraphy of middle and upper Paleocene continental strata, Bighorn Basin, Wyoming. American Journal of Science, 306:211245.CrossRefGoogle Scholar
Snell, K. E., Eiler, J. M., Dettman, D., and Koch, P. L. 2007. Continental temperatures from the Paleocene-Eocene boundary in the Big Horn Basin, WY from carbonate clumped isotope thermometry. Geochimica et Cosmochimica Acta, 71:A950.Google Scholar
Swenson, N. G. and Enquist, B. J. 2007. Ecological and evolutionary determinants of a key plant functional trait: wood density and its communitywide variation across latitude and elevation. American Journal of Botany, 94:451459.CrossRefGoogle Scholar
Todzia, C. A. and Keating, R. C. 1991. Leaf architecture of the Chloranthaceae. Annals of the Missouri Botanical Garden, 78:476496.CrossRefGoogle Scholar
Weijers, J. W. H., Schouten, S., Sluijs, A., Brinkhuis, H., and Damsté, J. S. S. 2007. Warm Arctic continents during the Palaeocene-Eocene thermal maximum. Earth and Planetary Science Letters, 261:230238.CrossRefGoogle Scholar
Wilf, P. 1997. When are leaves good thermometers? A new case for Leaf Margin Analysis. Paleobiology, 23:373390.CrossRefGoogle Scholar
Wilf, P. 2000. Late Paleocene-early Eocene climate changes in southwestern Wyoming: paleobotanical analysis. Geological Society of America Bulletin, 112:292307.2.0.CO;2>CrossRefGoogle Scholar
Wilf, P. 2008. Insect-damaged fossil leaves record food web response to ancient climate change and extinction. New Phytologist, 178:486502.CrossRefGoogle ScholarPubMed
Wilf, P. and Labandeira, C. C. 1999. Response of plant-insect associations to Paleocene-Eocene warming. Science, 284:21532156.CrossRefGoogle ScholarPubMed
Wilf, P., Wing, S. L., Greenwood, D. R., and Greenwood, C. L. 1998. Using fossil leaves as paleoprecipitation indicators: an Eocene example. Geology, 26:203206.2.3.CO;2>CrossRefGoogle Scholar
Wilf, P., Wing, S. L., Greenwood, D. R., and Greenwood, C. L. 1999. Using fossil leaves as paleoprecipitation indicators: An Eocene example: Reply. Geology, 27:92.Google Scholar
Wilf, P., Labandeira, C. C., Kress, W. J., Staines, C. L., Windsor, D. M., Allen, A. L., and Johnson, K. R. 2000. Timing the radiations of leaf beetles: hispines on gingers from latest Cretaceous to Recent. Science, 289:291294.CrossRefGoogle ScholarPubMed
Wilf, P., Labandeira, C. C., Johnson, K. R., Coley, P. D., and Cutter, A. D. 2001. Insect herbivory, plant defense, and early Cenozoic climate change. Proceedings of the National Academy of Sciences USA, 98:62216226.CrossRefGoogle ScholarPubMed
Wilf, P., Cúneo, N. R., Johnson, K. R., Hicks, J. F., Wing, S. L., and Obradovich, J. D. 2003a. High plant diversity in Eocene South America: evidence from Patagonia. Science, 300:122125.CrossRefGoogle Scholar
Wilf, P., Johnson, K. R., and Huber, B. T. 2003b. Correlated terrestrial and marine evidence for global climate changes before mass extinction at the Cretaceous-Paleogene boundary. Proceedings of the National Academy of Sciences USA, 100:599604.CrossRefGoogle Scholar
Wilf, P., Johnson, K. R., Cúneo, N. R., Smith, M. E., Singer, B. S., and Gandolfo, M. A. 2005a. Eocene plant diversity at Laguna del Hunco and Rio Pichileufú, Patagonia, Argentina. American Naturalist, 165:634650.CrossRefGoogle ScholarPubMed
Wilf, P., Labandeira, C. C., Johnson, K. R., and Cúneo, N. R. 2005b. Richness of plant-insect associations in Eocene Patagonia: a legacy for South American biodiversity. Proceedings of the National Academy of Sciences USA, 102:89448948.CrossRefGoogle ScholarPubMed
Wilf, P., Labandeira, C. C., Johnson, K. R., and Ellis, B. 2006. Decoupled plant and insect diversity after the end-Cretaceous extinction. Science, 313:11121115.CrossRefGoogle ScholarPubMed
Wilf, P., Gandolfo, M. A., Johnson, K. R., and Cúneo, N. R. 2007. Biogeographic significance of the Laguna del Hunco flora, early Eocene of Patagonia, Argentina. Geological Society of America Abstracts with Programs, 39:585.Google Scholar
Wilf, P., Little, S. A., Iglesias, A., Zamaloa, M. C., Gandolfo, M. A., Johnson, K. R., and Cúneo, N. R. 2008. Discovery of Papuacedrus (Cupressaceae, Libocedrinae) in Eocene Patagonia clarifies the Southern Rainforest enigma. Botanical Society of America Annual Meeting, Vancouver, abstract 391.Google Scholar
Wing, S. L. and Hickey, L. J. 1984. The Platycarya perplex and the evolution of the Juglandaceae. American Journal of Botany, 71:388411.CrossRefGoogle Scholar
Wing, S. L., Alroy, J., and Hickey, L. J. 1995. Plant and mammal diversity in the Paleocene to early Eocene of the Bighorn Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 115:117155.CrossRefGoogle Scholar
Wing, S. L., Bao, H., and Koch, P. L. 2000. An early Eocene cool period? Evidence for continental cooling during the warmest part of the Cenozoic. p. 197237. In Huber, B. T., MacLeod, K., and Wing, S. L., eds., Warm Climates in Earth History. Cambridge University Press, Cambridge.Google Scholar
Wing, S. L., Harrington, G. J., Smith, F. A., Bloch, J. I., Boyer, D. M., and Freeman, K. H. 2005. Transient floral change and rapid global warming at the Paleocene-Eocene boundary. Science, 310:993996.CrossRefGoogle ScholarPubMed
Wolfe, J. A. 1977. Paleogene floras from the Gulf of Alaska region. U.S. Geological Survey Professional Paper, 997:1108.Google Scholar
Wolfe, J. A. 1979. Temperature parameters of humid to mesic forests of Eastern Asia and relation to forests of other regions of the Northern Hemisphere and Australasia. U.S. Geological Survey Professional Paper, 1106:137.Google Scholar
Wolfe, J. A. 1992. Climatic, floristic, and vegetational changes near the Eocene/Oligocene boundary in North America, p. 421436. In Prothero, D. R. and Berggren, W. A., eds., Eocene-Oligocene Climatic and Biotic Evolution. Princeton University Press, Princeton, New Jersey.Google Scholar
Wolfe, J. A. 1993. A method of obtaining climatic parameters from leaf assemblages. U.S. Geological Survey Bulletin, 2040:171.Google Scholar
Wolfe, J. A. 1995. Paleoclimatic estimates from Tertiary leaf assemblages. Annual Review of Earth and Planetary Sciences, 23:119142.CrossRefGoogle Scholar
Wolfe, J. A. and Poore, R. Z. 1982. Tertiary marine and nonmarine climatic trends, p. 154158. In Climate in Earth History. National Academy Press, Washington, DC.Google Scholar
Wolfe, J. A. and Upchurch, G. R. 1986. Vegetation, climatic and floral changes at the Cretaceous-Tertiary boundary. Nature, 324:148152.CrossRefGoogle Scholar
Wolfe, J. A. and Wehr, W. C. 1987. Middle Eocene dicotyledonous plants from Republic, northeastern Washington. U.S. Geological Survey Bulletin, 1597:125.Google Scholar
Wolfe, J. A., Schorn, H. E., Forest, C. E., and Molnar, P. 1997. Paleobotanical evidence for high altitudes in Nevada during the Miocene. Science, 276:16721675.CrossRefGoogle Scholar
Wolfe, J. A., Forest, C. E., and Molnar, P. 1998. Paleobotanical evidence of Eocene and Oligocene paleoaltitudes in midlatitude western North America. Geological Society of America Bulletin, 110:664678.2.3.CO;2>CrossRefGoogle Scholar
Wright, I. J., Reich, P. B., Cornelissen, J. H. C., Falster, D. S., Garnier, E., Hikosaka, K., Lamont, B. B., Lee, W., Oleksyn, J., Osada, N., Poorter, H., Villar, R., Warton, D. I., and Westoby, M. 2005a. Assessing the generality of global leaf trait relationships. New Phytologist, 166:485496.CrossRefGoogle Scholar
Wright, I. J., Reich, P. B., Cornelissen, J. H. C., Falster, D. S., Groom, P. K., Hikosaka, K., Lee, W., Lusk, C. H., Niinemets, Ü, Oleksyn, J., Osada, N., Poorter, H., Warton, D. I., and Westoby, M. 2005b. Modulation of leaf economic traits and trait relationships by climate. Global Ecology and Biogeography, 14:411421.CrossRefGoogle Scholar
Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J. H. C., Diemer, M., Flexas, J., Garnier, E., Groom, P. K., Gulias, J., Hikosaka, K., Lamont, B. B., Lee, T., Lee, W., Lusk, C., Midgley, J. J., Navas, M.-L., Niinemets, Ü, Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior, L., Pyankov, V. I., Roumet, C., Thomas, S. C., Tjoelker, M. G., Veneklaas, E. J., and Villar, R. 2004. The worldwide leaf economics spectrum. Nature, 428:821827.CrossRefGoogle Scholar
Zamaloa, M. C., Gandolfo, M. A., Gonzalez, C. C., Romero, E. J., Cúneo, N. R., and Wilf, P. 2006. Casuarinaceae from the Eocene of Patagonia, Argentina. International Journal of Plant Sciences, 167:12791289.CrossRefGoogle Scholar
5
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Fossil Angiosperm Leaves: Paleobotany's Difficult Children Prove Themselves
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Fossil Angiosperm Leaves: Paleobotany's Difficult Children Prove Themselves
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Fossil Angiosperm Leaves: Paleobotany's Difficult Children Prove Themselves
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *