Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-25T09:34:36.354Z Has data issue: false hasContentIssue false

Time evolution of discharge current and light intensity in a PDP with Ne-H2 gas mixtures

Published online by Cambridge University Press:  23 November 2004

G. Musa
Affiliation:
National Institute for Lasers, Plasma and Radiation Physics, Bucharest, Romania
A. Baltog
Affiliation:
National Institute for Lasers, Plasma and Radiation Physics, Bucharest, Romania
L. C. Ciobotaru*
Affiliation:
National Institute for Lasers, Plasma and Radiation Physics, Bucharest, Romania
P. Chiru
Affiliation:
National Institute for Lasers, Plasma and Radiation Physics, Bucharest, Romania
C. P. Lungu
Affiliation:
National Institute for Lasers, Plasma and Radiation Physics, Bucharest, Romania
E. Raiciu
Affiliation:
National Institute for Lasers, Plasma and Radiation Physics, Bucharest, Romania
A. Ricard
Affiliation:
Centre de Physique des Plasmas et Applications, Université Paul Sabatier, 31062 Toulouse Cedex, France
Get access

Abstract

In previously published papers [G. Musa et al., Rom. Rep. Phys. 49, 195 (1997); G. Musa et al., Eur. Phys. J. Appl. Phys. 4, 165 (1998)] we reported a drastic change of time evolution of the barrier discharge current at the addition of hydrogen to neon–filling gas of the discharge device. Both, discharge current and discharge emitted light durations increase at least five times. We established that the main explanation of the above mentioned behavior consists in the negative-positive ion recombination, process which has one of the largest known cross–section [M.A. Lieberman and A.J. Lichtenberg, Principles of plasma discharges and material processing (John Wiley & Sons, N.Y., 1994)]. The first condition to have negative-positive ions recombination is to use as filling gas of the discharge device an electronegative–electropositive gas mixture [G. Musa et al., ESCAMPIG-16, Grenoble France, 2002, Vol. 2, p. 29; G. Musa et al., J. Phys. D: Appl. Phys. 18, 2119 (1985); A. Baltog et al., Contrib. Plasma Phys. 40, 537 (2000); G. Musa and A. Baltog, Contrib. Plasma Phys. 43, 210 (2003)]. Additional conditions must be fulfilled in order to ensure enough density of negative ions necessary for such a recombination process. An increased “consumption” of electrons is necessary to produce needed negative ions. Consequently, the wall polarization process is slowing down with subsequent increase of the light emission and discharge current duration. Possible use of this increase of light emission at electronegative gas addition to the filling gas neon as a mean to increase the discharge light generation efficiency is considered.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Musa, G., Baltog, A., Bajeu, G., Lungu, C.P., Raiciu, R., Borcoman, I., Ricard, A., Rom. Rep. Phys. 49, 195 (1997)
Musa, G., Baltog, A., Bajeu, G., Lungu, C.P., Raiciu, R., Borcoman, I., Ricard, A., Eur. Phys. J. Appl. Phys. 4, 165 (1998) CrossRef
M.A. Lieberman, A.J. Lichtenberg, Principles of plasma discharges and material processing (John Wiley & Sons, N.Y., 1994)
G. Musa, A. Baltog, L.C. Ciobotaru, B. Cudalbu, P. Chiru, ESCAMPIG-16, Grenoble France, 2002, Vol. 2, p. 29
Musa, G., Popescu, A., Baltog, A., Mustata, I., J. Phys. D: Appl. Phys. 18, 2119 (1985) CrossRef
Baltog, A., Raiciu, R., Musa, G., Contrib. Plasma Phys. 40, 537 (2000) 3.0.CO;2-5>CrossRef
Musa, G., Baltog, A., Contrib. Plasma Phys. 43, 210 (2003) CrossRef
Hayashi, D., K. Dakota. J. Appl. Phys. 83, 697 (1998) CrossRef
Katsch, H.M., Quandt, E., J. Phys. D: Appl. Phys. 25, 430 (1992) CrossRef
Mosbach, T., Katsch, H.M., Dobele, H.F., Plasma Sources Sci. Technol. 7, 75 (1998) CrossRef