Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T18:02:00.441Z Has data issue: false hasContentIssue false

The theoretical study on electronic structure and electromagnetic properties of α-MnO2 based on crystal defects

Published online by Cambridge University Press:  05 December 2014

Yuping Duan
Affiliation:
School of Materials Science and Engineering, Dalian University of Technology, Dalian 116085, P.R. China
Junlei Chen
Affiliation:
School of Materials Science and Engineering, Dalian University of Technology, Dalian 116085, P.R. China
Yahong Zhang
Affiliation:
School of Materials Science and Engineering, Dalian University of Technology, Dalian 116085, P.R. China
Tongmin Wang*
Affiliation:
School of Materials Science and Engineering, Dalian University of Technology, Dalian 116085, P.R. China
*
Get access

Abstract

First-principles calculations based on density functional theory (DFT) have been carried out to investigate the effects of crystal defects (intrinsic vacancy defects and ion doping) on the microwave dielectric response and the correlative electromagnetic properties of α-MnO2 systematically. The possible role of crystal defects in electromagnetic performance is studied utilizing density of states (DOS) and the bond length between the manganese and oxygen. Lattice distortion is induced by the introduction of crystal defects. The spin-electronic DOS demonstrates that Ni doping enhances the spin-polarization of MnO2, which indicates that the Ni-doped MnO2 possesses certain magnetic characteristic, which is helpful for magnetic loss. The emergence of a new defect mode, contributes to the relaxation polarization phenomenon, so as to enhance the dielectric loss ability. In addition, through the change of the bond length and pseudo gap width, it can be learned that the bond strength and covalency of Mn-O bonds are weakened, which increases the dielectric loss of MnO2. The results throw light on the exploration of theoretical research on the microwave absorbing properties of MnO2 with crystal defects.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Reddy, R.N., Reddy, R.G., J. Power Sources 132, 315 (2004)CrossRef
Chen, Y., Liu, C., Li, F., Cheng, H., J. Alloys Compd. 397, 282 (2005)CrossRef
Guan, H.T., Liu, S.H., Zhao, Y.B., Duan, Y.P., J. Electron. Mater. 35, 892 (2006)CrossRef
Guan, H.T., Zhao, Y.B., Liu, S.H., Lv, S., Eur. Phys. J. Appl. Phys. 36, 235 (2007)CrossRef
Duan, Y.P., Yang, Y., Ma, H., Liu, S.H., Cui, X.D., Chen, H.F., J. Phys. D: Appl. Phys. 41, 1 (2008)CrossRef
Sato, H., Enoki, T., Isobe, M., Ueda, Y., Phys. Rev. B 61, 3563 (2000)CrossRef
Yan, D., Cheng, S., Zhuo, R.F., Chen, J.T., Feng, J.J., Feng, H.T., Li, H.J., Wu, Z.G., Wang, J., Yan, P.X., Nanotechnology 20, 105706 (2009)CrossRef
Liu, X.M., Fu, S.Y., Huang, C.J., Powder Technol. 154, 120 (2005)CrossRef
Yue, G.H., Yan, P.X., Yan, D., Qu, D.M., Fan, X.Y., Wang, M.X., Shang, H.T., J. Cryst. Growth 294, 385 (2006)CrossRef
Wang, G.L., Tang, B., Zhuo, L.H., Ge, J.C., Xue, M., Eur. J. Inorg. Chem. 2006, 2313 (2006)CrossRef
Duan, Y.P., Ma, H., Li, X.G., Liu, S.H., Ji, Z.J., Physica B 405, 1826 (2010)CrossRef
Zhou, M., Zhang, X., Wei, J.M., Zhao, S.L., Wang, L., Feng, B.X., J. Phys. Chem. C 115, 1398 (2011)CrossRef
Duan, Y.P., Jing, H., Liu, Z., Liu, S.H., Ma, G.J., J. Appl. Phys. 111, 084109 (2012)CrossRef
Ueda, K., Tabata, H., Kawai, T., Appl. Phys. Lett. 79, 988 (2001)CrossRef
Lee, S.H., Kim, T.W., Park, D.H., Choy, J.H., Hwang, S.J., Jiang, N.Z., Park, S.E., Chem. Mater. 19, 5010 (2007)CrossRef
Imai, Y.J., Watanabe, A., J. Mater. Sci.: Mater. Electron. 15, 743 (2004)
Gong, C.H., Zhang, J.W., Yan, C., Cheng, X.Q., Zhang, J.W., Yu, L.G., Jin, Z.S., Zhang, Z.J., J. Mater. Chem. 22, 3370 (2012)CrossRef
Li, Y.L., Zhao, X., Fan, W.L., J. Phys. Chem. C 115, 3552 (2011)CrossRef
Li, X.L., Li, W.J., Chen, X.Y., Shi, C.W., J. Cryst. Growth 297, 387 (2006)CrossRef
Pan, Y., Zheng, W.T., Guan, W.M., Zhang, K.H., Yu, S.S., Hu, X.Y., Comput. Mater. Sci. 82, 12 (2014)CrossRef
Jing, H., Duan, Y.P., Liu, Z., Zhang, J., Liu, S.H., Physica B 407, 971 (2012)
Duan, Y.P., Liu, Z., Jing, H., Zhang, Y.H., Li, S.Q., J. Mater. Chem. 22, 18291 (2012)CrossRef
Duan, Y.P., Liu, Z., Zhang, Y.H., Wen, M., J. Mater. Chem. C 1, 1990 (2013)CrossRef
Kwon, K.D., Refson, K., Sposito, G., Geochimica et Cosmochimica Acta 73, 4142 (2009)CrossRef
Paik, Y., Osgovic, J.P., Wang, F., Bowden, W., Grey, C.P., J. Am. Chem. Soc. 123, 9367 (2001)CrossRef
Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, M.I.J., Refson, K., Payne, M.C., Z. Kristallogr. 220, 567 (2005)
Segall, M.D., Lindan, P.J.D., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J., Payne, M.C., J. Phys.: Condens. Matter 14, 2717 (2002)
Wright, A.F., Nelson, J.S., Phys. Rev. B: Condens. Matter Mater. Phys. 50, 2159 (1994)CrossRef
Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Perderson, M.R., Singh, D.J., Fiolhais, C., Phys. Rev. B: Condens. Matter Mater. Phys. 46, 6671 (1992)CrossRef
Tompsett, D.A., Parker, S.C., Bruce, P.G., Islam, M.S., Chem. Mater. 25, 536 (2013)CrossRef
Imai, Y., Watanabe, A., Shimono, I., J. Mater. Sci.: Mater. Electron. 14, 149 (2003)
Ogawa, H., Taketani, H., Kan, A., Fujita, A., Zouganelis, G., J. Eur. Ceram. Soc. 25, 2859 (2005)CrossRef
Tsuji, Y., Kan, A., Ogawa, H., Ishihara, S., J. Eur. Ceram. Soc. 25, 2883 (2005)CrossRef
Ogawa, H., Kan, A., Ishihara, S., Higashida, Y., J. Eur. Ceram. Soc. 23, 2485 (2003)CrossRef
Li, J.M., Han, Y.X., Qiu, T., Jin, C.G., Mater. Res. Bull. 47, 2375 (2012)CrossRef
Brown, I.D., Shannon, R.D., Acta Crystall. Sect. A: Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 29, 266 (1973)CrossRef
Brown, I.D., Shannon, R.D., Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem. 32, 1957 (1976)CrossRef