Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-25T05:44:44.490Z Has data issue: false hasContentIssue false

Temperature mapping of Al0.85In0.15N/AlN/GaN high electron mobility transistors through micro-photoluminescence studies

Published online by Cambridge University Press:  20 May 2009

M. Gonschorek*
Affiliation:
École Polytechnique Fédérale de Lausanne (EPFL), Institute of Quantum Electronics and Photonics, 1015 Lausanne, Switzerland
D. Simeonov
Affiliation:
École Polytechnique Fédérale de Lausanne (EPFL), Institute of Quantum Electronics and Photonics, 1015 Lausanne, Switzerland
J.-F. Carlin
Affiliation:
École Polytechnique Fédérale de Lausanne (EPFL), Institute of Quantum Electronics and Photonics, 1015 Lausanne, Switzerland
E. Feltin
Affiliation:
École Polytechnique Fédérale de Lausanne (EPFL), Institute of Quantum Electronics and Photonics, 1015 Lausanne, Switzerland
M. A. Py
Affiliation:
École Polytechnique Fédérale de Lausanne (EPFL), Institute of Quantum Electronics and Photonics, 1015 Lausanne, Switzerland
N. Grandjean
Affiliation:
École Polytechnique Fédérale de Lausanne (EPFL), Institute of Quantum Electronics and Photonics, 1015 Lausanne, Switzerland
Get access

Abstract

Crack-free lattice-matched Al0.85In0.15N/GaN heterostructures were grown on sapphire substrates with barrier thicknesses up to 100 nm which exhibit very high polarization-induced electron sheet density (${>}2.5\times 10^{13}$ cm−2) located at the heterointerface. These layers have been further processed as high electron mobility transistors (HEMTs). Optical characterization of these structures was carried out by photoluminescence and microphotoluminescence (${\rm \mu} $PL) for different biased voltages. The insertion of an InGaN back-barrier unambiguously reveals that spatially direct optical recombinations occur within the AlInN alloy. Since the GaN excitonic bandgap is very sensitive to local temperature changes, the ${\rm \mu} $PL technique allows mapping very precisely the actual local temperature distribution in biased HEMT devices. For a gate length of 1.5 ${\rm \mu }$m temperatures up to 1130 K were found at a drain-source voltage of 20 V thus indicating the presence of a hot phonon bath.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Higashiwaki, M., Mimura, T., Matsui, T., Jpn J. Appl. Phys. 45, L1111 (2006) CrossRef
Cao, Y., Jena, D., Appl. Phys. Lett. 90, 182112 (2007) CrossRef
Kuzmík, J., IEEE Electron Dev. Lett. 22, 510 (2001) CrossRef
Gonschorek, M., Carlin, J.-F., Feltin, E., Py, M.A., Grandjean, N., Appl. Phys. Lett. 89, 062106 (2006) CrossRef
Medjdoub, F., Ducatteau, D., Gaquière, C., Carlin, J.-F., Gonschorek, M., Feltin, E., Py, M.A., Grandjean, N., Kohn, E., Electron. Lett. 43, 309 (2007) CrossRef
Sarazin, N. et al., Electron. Lett. 43, 1317 (2007) CrossRef
Simms, R.J.T., Pomeroy, J.W., Uren, M.J., Martin, T., Kuball, M., IEEE Trans. Electron Dev. 55, 478 (2008) CrossRef
Carlin, J.-F., Ilegems, M., Appl. Phys. Lett. 83, 668 (2003) CrossRef
Butté, R. et al., J. Phys. D: Appl. Phys. 40, 6328 (2007) CrossRef
Gonschorek, M., Carlin, J.-F., Feltin, E., Py, M.A., Grandjean, N., Darakchieva, V., Monemar, B., Lorenz, M., Ramm, G., J. Appl. Phys. 103, 093714 (2008) CrossRef
Christmann, G., Simeonov, D., Butté, R., Feltin, E., Carlin, J.-F., Grandjean, N., Appl. Phys. Lett. 89, 261101 (2006) CrossRef
Iliopoulos, E., Adikimenakis, A., Giesen, C., Heuken, M., Georgakilas, A., Appl. Phys. Lett. 92, 191907 (2008) CrossRef
Onuma, T., Chichibu, S.F., Uchinuma, Y., Sota, T., Yamaguchi, S., Kamiyama, S., Amano, H., Akasaki, I., J. Appl. Phys. 94, 2449 (2003) CrossRef
Chichibu, S.F. et al., Nat. Mater. 5, 810 (2006) CrossRef
Wang, L.-W., Phys. Rev. B 63, 245107 (2001) CrossRef
Varshni, Y.P., Physica A 34, 149 (1967)
Nam, K.B., Li, J., Lin, J.Y., Jiang, H.X., Appl. Phys. Lett. 85, 3489 (2004) CrossRef
Vainshtein, I.A., Zatsepin, A.F., Kortov, V.S., Phys. Solid State 41, 905 (1999) CrossRef
Tkachman, M.G., Shubina, T.V., Jmerik, V.N., Ivanov, S.V., Kop'ev, P.S., Paskova, T., Monemar, B., Semiconductors 37, 532 (2003) CrossRef
Dow, J.D., Redfield, D., Phys. Rev. B 1, 3358 (1970) CrossRef
H. Morkoç, J. Leach, in Polarization Effects in Semiconductors: From Ab Initio Theory to Device Application, edited by C. Wood, D. Jena (Springer, New York, 2008), p. 403
Ramonas, M., Matulionis, A., Liberis, J., Eastman, L., Chen, X., Sun, Y.-J., Phys. Rev. B 71, 075324 (2005) CrossRef
Shockley, W., Bell Syst. Tech. J. 30, 990 (1951) CrossRef
Tsai, C.-Y., Chen, C.-H., Sung, T.-L., Tsai, C.-Y., Rorison, J.M., J. Appl. Phys. 85, 1475 (1999) CrossRef
Sridharan, S., Venkatachalam, A., Yoder, P.D., J. Comput. Electron. 7, 236 (2008) CrossRef