Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-19T00:26:42.926Z Has data issue: false hasContentIssue false

Synthesis and characterization of Ag+ ion conducting glassy electrolytes

Published online by Cambridge University Press:  26 July 2013

Angesh Chandra*
Affiliation:
Department of Applied Physics, Shri Shankaracharya Institute of Professional Management & Technology, Raipur 492 015, Chhattisgarh, India
Alok Bhatt
Affiliation:
Department of Applied Physics, Christian College of Engg. & Tech., Bhilai 490026, Chhattisgarh, India
Archana Chandra
Affiliation:
Department of Applied Physics, Shri Shankaracharya Institute of Professional Management & Technology, Raipur 492 015, Chhattisgarh, India Dr. C.V. Raman University, Kargi Road, Kota, Bilaspur, Chhattisgarh, India
Get access

Abstract

Synthesis and characterization of new Ag+ ion conducting glassy systems: x[0.75AgI:0.25AgC1]: (1 – x)[Ag2O:P2O5], where 0.1 < x < 1 in molar weight fraction, are reported. The present glassy electrolytes have been synthesized by melt-quench technique using a high-speed twin roller-quencher. An alternate host salt: “quenched [0.75AgI:0.25AgC1] mixed system/solid solution”, has been used in place of the traditional host AgI. The compositional dependence conductivity studies on the glassy systems: x[0.75AgI:0.25AgC1]:(1 – x)[Ag2O:P2O5] as well as xAgI:(1 – x)[Ag2O:P2O5] prepared identically, indicated that the composition at x = 0.75 exhibited the highest room temperature conductivity (σ ~ 5.5 x 10−3 S cm−1). The composition: 0.75[0.75AgI:0.25AgC1]:0.25[Ag2O:P2O5] has been referred to as optimum conducting composition (OCC). The some basic ion transport parameters viz. ionic conductivity (σ), ionic mobility (μ), mobile ion concentration (n), ionic drift velocity (vd), ion transference number (tion) and activation energy (Ea) values have been characterized with the help of various experimental techniques. A solid state battery was fabricated and its basic cell parameters calculated.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Van Gool, W. (ed.), Fast Ionic Transport in Solids (North Holland, Amsterdam, 1973)Google Scholar
Mahan, G.D., Roth, W.L., Superionic Conductors (Plenum Press, New York, 1976)CrossRefGoogle Scholar
Chandra, S., Superionic Solids – Principle and Applications (North Holland, Amsterdam, 1981)Google Scholar
Laskar, A.L., Chandra, S., Superionic Solids and Solid Electrolytes – Recent Trends (Academic Press, New York, 1989)Google Scholar
Maier, J. (ed.), Solid State Ionics – 2000, Vol. 135–137 (North Holland, Amsterdam, 2000)Google Scholar
Ingram, M.D., Phys. Chem. Glasses 28, 215 (1987)
Fusco, F.A., Tuller, H.L., edited by Laskar, A.L., Chandra, S., in Superionic Solids and Solid Electrolytes – Recent Trends (Academic Press, New York, 1989), p. 43 CrossRefGoogle Scholar
Angell, C.A., Annu. Rev. Phys. Chem. 43, 693 (1992)CrossRef
Souquet, J.L., edited by Bruce, P.G., in Solid State Electrochemistry (Cambridge University Press, Cambridge, 1995), p. 74 Google Scholar
Takahashi, T., edited by Munshi, M.Z.A., in Handbook of Solid State Batteries & Capacitors (World Scientific, Singapore, 1995), p. 79 CrossRefGoogle Scholar
Magistris, A., Chiodelli, G., Duclot, M., Solid State Ion. 9/10, 611 (1983)CrossRef
Chowdari, B.V.R., Kumari, P.P., Solid State Ion. 86–88, 521 (1996)CrossRef
Agrawal, R.C., Gupta, R.K., Kumar, R., Kumar, A., J. Mater. Sci. 29, 3673 (1994)CrossRef
Agrawal, R.C., Verma, Mohan L., Gupta, R.K., J. Phys. D: Appl. Phys. 31, 2854 (1998)CrossRef
Agrawal, R.C., Verma, M.L., Gupta, R.K., Kumar, R., Chandola, R.M., Ionics 8, 426 (2002)CrossRef
Agrawal, R.C., Gupta, R.K., Bhatt, A., Verma, M.L., Chandra, A., Ionics 10, 126 (2004)CrossRef
Agrawal, R.C., Bhatt, A., Chandra, A., Diwan, P., Verma, M.L., Indian J. Phys. 79, 737 (2005)
Watanable, M., Sanui, K., Ogata, N., Kobayashi, T., Ontaki, Z., J. Appl. Phys. 57, 123 (1985)CrossRef
Chandra, S., Tolpadi, S.K., Hashmi, S.A., Solid State Ionics 28–30, 651 (1988)CrossRef
Wagner, J.B. Jr., Wagner, C., J. Chem. Phys. 26, 1597 (1957)CrossRef
Agrawal, R.C., Chandra, A., Bhatt, A., Mahipal, Y.K., J. Phys. D 40, 4714 (2007)CrossRef
Gupta, R.K., Ph.D. Thesis (Pt. Ravishankar Shukla University, Raipur, India, 1996)
Angell, C.A., Solid State Ion. 18–19, 72 (1986)CrossRef
Ravaine, D., Souquet, J.L., Phys. Chem. Glasses 19, 115 (1978)
Ingram, M.D., Mackenzie, M.A., Muller, W., Torge, M., Solid State Ion. 28–30, 677 (1988)CrossRef
Chandra, A., Bhatt, A., Chandra, A., J. Mat. Sci. Tech. 29, 193 (2013)CrossRef