Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-27T23:29:55.125Z Has data issue: false hasContentIssue false

Sterilization/disinfection of medical devices using plasma: the flowing afterglow of the reduced-pressure N2-O2 discharge as the inactivating medium

Published online by Cambridge University Press:  10 July 2013

Michel Moisan*
Affiliation:
Groupe de Physique des Plasmas, Université de Montréal, Montréal, Québec, Canada
Karim Boudam
Affiliation:
Groupe de Physique des Plasmas, Université de Montréal, Montréal, Québec, Canada
Denis Carignan
Affiliation:
Groupe de Physique des Plasmas, Université de Montréal, Montréal, Québec, Canada
Danielle Kéroack
Affiliation:
Groupe de Physique des Plasmas, Université de Montréal, Montréal, Québec, Canada
Pierre Levif
Affiliation:
Groupe de Physique des Plasmas, Université de Montréal, Montréal, Québec, Canada
Jean Barbeau
Affiliation:
Laboratoire de Microbiologie et d’Immunologie, Faculté de Médecine Dentaire, Université de Montréal, Montréal, Québec, Canada
Jacynthe Séguin
Affiliation:
Laboratoire de Microbiologie et d’Immunologie, Faculté de Médecine Dentaire, Université de Montréal, Montréal, Québec, Canada
Kinga Kutasi
Affiliation:
Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary
Benaïssa Elmoualij
Affiliation:
Centre de Recherche sur les Protéines Prions (CRPP), Service d’Histologie Humaine, Université de Liége, Liége, Belgium
Olivier Thellin
Affiliation:
Centre de Recherche sur les Protéines Prions (CRPP), Service d’Histologie Humaine, Université de Liége, Liége, Belgium
Willy Zorzi
Affiliation:
Centre de Recherche sur les Protéines Prions (CRPP), Service d’Histologie Humaine, Université de Liége, Liége, Belgium

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Potential sterilization/disinfection of medical devices (MDs) is investigated using a specific plasma process developed at the Université de Montréal over the last decade. The inactivating medium of the microorganisms is the flowing afterglow of a reduced-pressure N2-O2 discharge, which provides, as the main biocidal agent, photons over a broad ultraviolet (UV) wavelength range. The flowing afterglow is considered less damaging to MDs than the discharge itself. Working at gas pressures in the 400—700 Pa range (a few torr) ensures, through species diffusion, the uniform filling of large volume chambers with the species outflowing from the discharge, possibly allowing batch processing within them. As a rule, bacterial endospores are used as bio-indicators (BI) to validate sterilization processes. Under the present operating conditions, Bacillus atrophaeus is found to be the most resistant one and is therefore utilized as BI. The current paper reviews the main experimental results concerning the operation and characterization of this sterilizer/disinfector, updating and completing some of our previously published papers. It uses modeling results as guidelines, which are particularly useful when the corresponding experimental data are not (yet) available, hopefully leading to more insight into this plasma afterglow system. The species flowing out of the N2-O2 discharge can be divided into two groups, depending on the time elapsed after they left the discharge zone as they move toward the chamber, namely the early afterglow and the late afterglow. The early flowing afterglow from a pure N2 discharge (also called pink afterglow) is known to be comprised of N2+ and N4+ ions. In the present N2-O2 mixture discharge, NO+ ions are additionally generated, with a lifetime that extends over a longer period than that of the nitrogen molecular ions. We shall suppose that the disappearance of the NO+ ions marks the end of the early afterglow regime, thereby stressing our intent to work in an ion-free process chamber to minimize damage to MDs. Therefore, operating conditions should be set such that the sterilizer/disinfector chamber is predominantly filled by N and O atoms, possibly together with long-lived metastable-state O2(1 Δg) (singlet-delta) molecules. Various aspects related to the observed survival curves are examined: the actual existence of two “phases” in the inactivation rate, the notion of UV irradiation dose (fluence) and its implications, the UV photon best wavelength range in terms of inactivation efficiency, the influence of substrate temperature and the reduction of UV intensity through surface recombination of N and O atoms on the object/packaging being processed. To preserve their on-shelf sterility, MDs are sealed/wrapped in packaging material. Porous packaging materials utilized in conventional sterilization systems (where MDs are packaged before being subjected to sterilization) were tested and found inadequate for the N2-O2 afterglow system in contrast to a (non-porous) polyolefin polymer. Because the latter is non-porous, its corresponding pouch must be kept unsealed until the end of the process. Even though it is unsealed, but because the opening is very small the O2(1Δg) metastable-state molecules are expected to be strongly quenched by the pouch material as they try to enter it and, as a result, only N and O atoms, together with UV photons, are significantly present within it. Therefore, by examining a given process under pouch and no-pouch conditions, it is possible to determine what are the inactivating agents operating: (i) when packaged, these are predominantly UV photons, (ii) when unpackaged, O2(1Δg) molecules together with UV photons can be acting, (iii) comparing the inactivation efficiency under both packaged and unpackaged conditions allows the determination of the relative contribution of UV photons (if any) and O2(1Δg) metastable-state molecules. Such a method is applied to pyrogenic molecules and to the enzymatic activity of lysozyme proteins once exposed to the N2-O2 flowing afterglow. Finally, the activity of the infectious prion protein is shown to be reduced when exposed to the present flowing afterglow, as demonstrated by both in vitro and in vivo experiments.

Type
Review Article
Copyright
© EDP Sciences, 2013

References

Rutala, W.A., Weber, D.J., Guideline for Disinfection and Sterilization in Healthcare Facilities (Center for Disease Control (CDC), USA, 2008) http://www.cdc.gov/hicpac/pdf/guidelines/Disinfection\_Nov\_2008.pdf
Spaulding, E.H., in Disinfection, Sterilization and Preservation edited by Lawrence, C.A., Block, S.S., (Lea & Frebiger, 1968)Google Scholar
Pollak, J., Moisan, M., Kéroack, D., Boudam, M.K., J. Phys. D Appl. Phys. 41, 316 (2008)CrossRef
Mahfoudh, A., Moisan, M., Séguin, J., Barbeau, J., Kabouzi, Y., Kéroack, D., Ozone: Sci. Eng. 32, 180 (2010)CrossRef
Moisan, M., Barbeau, J., Moreau, S., Pelletier, J., Tabrizian, M., Yahia, L.H., Int. J. Pharm. 226, 1 (2001)CrossRef
Levif, P., Séguin, J., Moisan, M., Barbeau, J., Plasma Process. Polym. 8, 617 (2011)CrossRef
Moisan, M., Pelletier, J., Physics of collisional plasmas (Springer, 2012)CrossRefGoogle Scholar
Boudam, M.K., Moisan, M., Saoudi, B., Popovici, C., Gherardi, N., Massines, F., J. Phys. D: Appl. Phys. 39, 3494 (2006)CrossRef
Rossi, F., Kylián, O., Rauscher, H., Hasiwa, M., Gilliland, D., New J. Phys. 11, 115017 (2009)CrossRef
Ehlbeck, J., Schnabel, U., Polak, M., Winter, J., Von Woedtke, T., Brandenburg, R., Von Dem Hagen, T., Weltmann, K.D., J. Phys. D: Appl. Phys. 44, 013002 (2011)CrossRef
Tsiolko, V.V., in Plasma for Bio-Decontamination, Medicine and Food Security edited by Machala, Z., Hensel, K., Akishev, Y., (Springer, Netherlands, 2012)Google Scholar
Kutasi, K., Saoudi, B., Pintassilgo, C.D., Loureiro, J., Moisan, M., Plasma Process. Polym. 5, 840 (2008)CrossRef
Cleaver, J.E., Laposa, R.R., Limoli, C.L., Cell Cycle 2, 309 (2003)CrossRef
Curtis, S.B., Radiat. Res. 106, 252 (1986)CrossRef
Slieman, T.A., Nicholson, W.L., Appl. Environ. Microbiol. 66, 199 (2000)CrossRef
Pennell, K.G., Naunovic, Z., Blatchley, E.T. III, J. Environ. Eng. 134, 513 (2008)CrossRef
Munakata, N., Saito, M., Hieda, K., Photochem. Photobiol. 54, 761 (1991)CrossRef
Pollak, J., Moisan, M., Kéroack, D., Séguin, J., Barbeau, J., Plasma Process. Polym. 5, 14 (2008)CrossRef
Pintassilgo, C.D., Loureiro, J., Guerra, V., J. Phys. D: Appl. Phys. 38, 417 (2005)CrossRef
Pintassilgo, C.D., Kutasi, K., Loureiro, J., Plasma Source. Sci. Technol. 16, S115 (2007)CrossRef
Gross, R.W., Cohen, N., J. Chem. Phys. 48, 2582 (1968)CrossRef
Mérel, P., Tabbal, M., Chaker, M., Moisan, M., Ricard, A., Plasma Source. Sci. Technol. 7, 550 (1998)CrossRef
Moisan, M., Zakrzewski, Z., J. Phys. D: Appl. Phys. 24, 1025 (1991)CrossRef
Carignan, D., M.Sc. thesis, Université de Montréal, 2013
Ricard, A., Moisan, M., Moreau, S., J. Phys. D: Appl. Phys. 34, 1203 (2001)CrossRef
Boudam, M.K., Saoudi, B., Moisan, M., Ricard, A., J. Phys. D.: Appl. Phys. 40, 1694 (2007)CrossRef
Villeger, S., Thése de doctorat, Université de Toulouse III, 2004
Gordiets, B., Ferreira, C.M., Nahorny, J., Pagnon, D., Touzeau, M., Vialle, M., J. Phys. D: Appl. Phys. 29, 1021 (1996)CrossRef
Carignan, D., Boudam, M.K., Moisan, M., Second International Conference on Plasma Medicine ICPM-2 (San Antonio, Texas, 2009)Google Scholar
Moreau, S., Moisan, M., Tabrizian, M., Barbeau, J., Pelletier, J., Ricard, A., Yahia, L., J. Appl. Phys. 88, 1166 (2000)CrossRef
Boudam, M.K., Moisan, M., J. Phys. D: Appl. Phys. 43, 295202 (2010)CrossRef
Elmoualij, B., Thellin, O., Gofflot, S., Heinen, E., Levif, P., Séguin, J., Moisan, M., Leduc, A., Barbeau, J., Zorzi, W., Plasma Process. Polym. 9, 612 (2012)CrossRef
Rossi, F., Kylián, O., Hasiwa, M., Plasma Process. Polym. 3, 431 (2006)CrossRef
Akishev, Y., Grushin, M., Karalnik, V., Trushkin, N., Kholodenko, V., Chugunov, V., Kobzev, E., Zhirkova, N., Irkhina, I., Kireev, G., Pure Appl. Chem. 80, 1953 (2008)CrossRef
Cerf, O., J. Appl. Microbiol. 42, 1 (1977)
Fleisch, T., Kabouzi, Y., Moisan, M., Pollak, J., Castaños-Martínez, E., Nowakowska, H., Zakrzewski, Z., Plasma Source. Sci. Technol. 16, 173 (2007)CrossRef
Crevier, M.C., M.Sc. Thesis, École polytechnique de Montréal, 2003
Cayla, F., stage de Maîtrise recherche (Université Joseph Fourier, Grenoble, France, 2003)Google Scholar
Clark, G., Dougherty, W.J., Kasten, F.H., Cantwell, G.E., Coalson, R.E., Mohr, J.L., Spicer, S.S., Phillips, R.L., Schneider, H., Bartholomew, J.W., edited by Clark, G., in Staining procedures (Williams & Wilkins, 1981)Google ScholarPubMed
Singh, M.K., Ogino, A., Nagatsu, M., New J. Phys. 11, 115027 (2009)CrossRef
Liautard, J.P., J. Soc. Biol. 193, 311 (1999)CrossRef
Riesner, D., Br. Med. Bull. 66, 21 (2003)CrossRef
Moesby, L., Hansen, E.W., Christensen, J.D., Hoyer, C.H., Uhl, G.L., Olsen, H.B., Eur. J. Pharm. Sci. 26, 318 (2005)CrossRef
von Keudell, A., Awakowicz, P., Benedikt, J., Raballand, V., Yanguas-Gil, A., Opretzka, J., Flötgen, C., Reuter, R., Byelykh, L., Halfmann, H., Stapelmann, K., Denis, B., Wunderlich, J., Muranyi, P., Rossi, F., Kylián, O., Hasiwa, N., Ruiz, A., Rauscher, H., Sirghi, L., Comoy, E., Dehen, C., Challier, L., Deslys, J.P., Plasma Process. Polym. 7, 327 (2010)CrossRef
Kylián, O., Hasiwa, M., Gilliland, D., Rossi, F., Plasma Process. Polym. 5, 26 (2008)CrossRef
Chung, T.-Y., Ning, N., Chu, J.-W., Graves, D.B., Bartis, E., Joonil, S., Oehrlein, G.S., Plasma Process. Polym. 10, 167 (2013)CrossRef
Aguzzi, A., Callela, A.M., Physiol. Rev. 89, 1105 (2009)CrossRef
Pelletier, J. Yahia, L.H. Barbeau, J. Canada (priority 1999), US Patent No. 6 707 254, 2004
Savage, N.W., Walsh, L.J., Aust. Dent. J. 40, 197 (1995)CrossRef
Levif, P., Séguin, J., Moisan, M., Soum-Glaude, A., Barbeau, J., J. Phys. D: Appl. Phys. 44, 405201 (2011)CrossRef
Denis, B., Steves, S., Semmler, E., Bibinov, N., Novak, W., Awakowicz, P., Plasma Process. Polym. 9, 619 (2012)CrossRef
Brétagnol, F., Rauscher, H., Hasiwa, M., Kylián, O., Ceccone, G., Hazell, L., Paul, A.J., Lefranc, O., Rossi, F., Acta. Biomat. 4, 1745 (2008)CrossRef