Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-23T11:39:34.734Z Has data issue: false hasContentIssue false

Stacking faults in heavily nitrogen doped 4H-SiC

Published online by Cambridge University Press:  15 July 2004

K. Irmscher*
Affiliation:
Institut für Kristallzüchtung, Max-Born-Straße 2, D-12489 Berlin, Germany
J. Doerschel
Affiliation:
Institut für Kristallzüchtung, Max-Born-Straße 2, D-12489 Berlin, Germany
H. -J. Rost
Affiliation:
Institut für Kristallzüchtung, Max-Born-Straße 2, D-12489 Berlin, Germany
D. Schulz
Affiliation:
Institut für Kristallzüchtung, Max-Born-Straße 2, D-12489 Berlin, Germany
D. Siche
Affiliation:
Institut für Kristallzüchtung, Max-Born-Straße 2, D-12489 Berlin, Germany
M. Nerding
Affiliation:
Institut für Werkstoffwissenschaften, Lehrstuhl Mikrocharakterisierung, Universität Erlangen-Nürnberg, Cauerstraße 6, D-91058 Erlangen, Germany
H. P. Strunk
Affiliation:
Institut für Werkstoffwissenschaften, Lehrstuhl Mikrocharakterisierung, Universität Erlangen-Nürnberg, Cauerstraße 6, D-91058 Erlangen, Germany
Get access

Abstract

A high density of planar defects is observed by scanning and transmission electron microscopy in wafers cut from 4H-SiC crystals containing nitrogen above about 2 × 1019 cm−3 and heat treated at 1100 °C. All of the planar defects observed by high-resolution transmission electron microscopy have the same structure comprising six Si-C bilayers in cubic stacking sequence. Such a lamella can originate from two stacking faults in neighbouring basal planes and is therefore called double stacking fault. The recently proposed quantum well model of the electronic structure of the double stacking faults is used to explain the characteristic luminescence band at about 500 nm and the strong anisotropy of the electrical resistivity in the heavily doped, heat treated wafers.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rost, H. - J., Doerschel, J., Irmscher, K., Schulz, D., Siche, D., J. Cryst. Growth 257, 75 (2003) CrossRef
Okojie, R. S., Xhang, M., Pirouz, P., Tumakha, S., Jessen, G., Brillson, L. J., Mater. Sci. Forum 389–393, 451 (2002) CrossRef
Skromme, B. J., Palle, K., Poweleit, C. D., Bryant, L. R., Vetter, W. M., Dudley, M., Moore, K., Gehoski, T., Mater. Sci. Forum 389–393, 455 (2002) CrossRef
Liu, J. Q., Chung, H. J., Kuhr, T., Li, Q., Skowronski, M., Appl. Phys. Lett. 80, 2111 (2002) CrossRef
Kuhr, T., Liu, J. Q., Chung, H. J., Skowronski, M., J. Appl. Phys. 92, 5863 (2002) CrossRef
Lindefelt, U., Iwata, H., Öberg, S., Briddon, P. R., Mater. Sci. Forum 433–436, 907 (2003) CrossRef
Iwata, H., Lindefelt, U., Öberg, S., Briddon, P. R., J. Phys.: Condens. Matter 14, 12733 (2002)
Bai, S., Wagner, G., Shishkin, E., Choyke, W. J., Devaty, R. P., Zhang, M., Pirouz, P., Kimoto, T., Mater. Sci. Forum 389–393, 589 (2002) CrossRef
Sridhara, S. G., Carlsson, F. H. C., Bergman, J. P., Janzen, E., Appl. Phys. Lett. 79, 3944 (2001) CrossRef