Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-25T03:58:09.886Z Has data issue: false hasContentIssue false

OH- absorption band in LiTaO3 with varied composition and hydrogenation

Published online by Cambridge University Press:  08 August 2007

L. Shi
Affiliation:
Tianjin institute of urban construction, Tianjin 300384, P.R. China
W. Yan*
Affiliation:
School of Material Science and Engineering, Hebei University of Technology, Tianjin 300130, P.R. China
Y. Kong
Affiliation:
The Key Lab of Advanced Technique and Fabrication For Weak-Light Nonlinear Photonics Materials, Ministry of Education, Nankai University, Tianjin 300457, P.R. China
Get access

Abstract

OH- absorption bands of lithium tantalate crystals have been measured at room temperature, and the bands shape depending on the crystal composition has been observed. OH- absorption bands are fitted with three Lorentzian peaks by varying position, halfwidth, and area. Nearly constant peak positions (3461, 3475 and 3486 cm-1) for all samples are obtained. Hydrogenation is also performed to the crystals and its influence on the decomposed peaks (position, halfwidth and area) is investigated. The results show the fitting parameters of peaks have different values for crystals with different hydrogen concentration, which is interpreted by the different sites occupied by H+ in terms of the modified model about the location of Li-vacancy in the lattice. Additionally, it is shown that the halfwidth of peak at 3461 cm-1 remain unchanged regardless of hydrogen concentration, which make this parameter more suitable than other ones to determine the composition of LiTaO3 crystals. The quantitative relationship between the halfwidth of peak at 3461 cm-1 and the crystal composition is also presented.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mizuuchi, K., Yamamoto, K., Appl. Phys. Lett. 60, 1283 (1992) CrossRef
P. Günter, J.P. Huignard, Photorefractive Materials and Their Applications (Springer-Verlag, Heidelberg, 1989), Vols. I and II
Vormanm, H., Weber, G., Kapphan, S., Kratzig, E., Solid State Commun. 40, 543 (1981) CrossRef
Jackel, J.L., Fraser, D.B., Denton, R.T., Rich, T.C., Appl. Phys. Lett. 41, 607 (1982) CrossRef
Cabrera, J.M., Olivares, J., Carrascosa, M., Rams, J., Mûller, R., Diéguez, E., Adv. Phys. 45, 349 (1996) CrossRef
Wöhlecke, M., Kovács, L., Crit. Rev. Solid State Mater. Sci. 26, 1 (2001) CrossRef
Bäumer, C., David, C., Betzler, K., Hesse, H., Lengyel, K., Kovács, L., Wöhlecke, M., Phys. Stat. Sol. A 201, R13 (2004) CrossRef
Herrington, J.R., Dischler, B., Rauber, A., Schneider, J., Solid State Commun. 12, 351 (1973) CrossRef
Kovács, L., Szalav, V., Capelletti, R., Solid State Commun. 52, 1029 (1984) CrossRef
Jovanovic, A., Kapphan, S., Wöhlecke, M., Cryst. Lattice Defects Amorph. Mater. 15, 137 (1987)
Kovács, L., Wöhlecke, M., Jovanovic, A., Polgar, K., Kapphan, S., J. Phys. Chem. Solids 52, 797 (1991) CrossRef
Kong, Y., Zhang, W., Chen, X., Xu, J., Zhang, G., J. Phys.: Condens. Matter 11, 2139 (1999)
Yan, W., Kong, Y., Shi, L., Xie, X., Li, X., Xu, J., Lou, C., Liu, H., Zhang, W., Zhang, G., Phys. Stat. Sol. A 201, 2013 (2004) CrossRef
Bordui, P.F., Notwood, F.L.G., Bird, C.D., Carella, J.T., J. Appl. Phys. 78, 4647 (1995) CrossRef
Shi, L., Kong, Y., Yan, W., Liu, H., Li, X., Xie, X., Zhao, D., Sun, L., Xu, J., Sun, J., Chen, S., Zhang, L., Huang, Z., Liu, S., Zhang, W., Zhang, G., Solid State Commun. 135, 251 (2005) CrossRef
Klauer, S., Wöhlecke, M., Kapphan, S., Phys. Rev. B 45, 2786 (1992) CrossRef
Abrahams, S.C., Bernstein, J.L., J. Phys. Chem. Solids 28, 1685 (1967) CrossRef
Polgár, K., Kovács, L., Corrdsi, G., Szaller, Zs., Péter, Á., J. Cryst. Growth 177, 211 (1997) CrossRef