Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-20T10:36:19.674Z Has data issue: false hasContentIssue false

A novel simplified two-dimensional magneto-optical trap as an intense source of slow cesium atoms

Published online by Cambridge University Press:  04 May 2006

N. Castagna*
Affiliation:
Observatoire cantonal, rue de l'Observatoire 58, 2000 Neuchâtel, Switzerland
J. Guéna
Affiliation:
Observatoire cantonal, rue de l'Observatoire 58, 2000 Neuchâtel, Switzerland
M. D. Plimmer
Affiliation:
Observatoire cantonal, rue de l'Observatoire 58, 2000 Neuchâtel, Switzerland
P. Thomann
Affiliation:
Observatoire cantonal, rue de l'Observatoire 58, 2000 Neuchâtel, Switzerland
Get access

Abstract

We describe the design and performance of a slow atom source based on a 2D magneto-optical trap (MOT) that uses an innovative simple optical configuration. Metal-coated retro-reflecting prisms replace mirrors and quarter-wave plates so the optical power of the cooling laser beam is recycled. This source has been characterised for three different configurations: with and without transverse magnetic field gradient, and with a pusher beam to obtain a 2D+-MOT. The longitudinal velocity is of the order of 25 m·s−1, with a transverse velocity spread ≤1 m·s−1, while the typical atomic flux density obtained is up to 1.3×1014 at ·s−1·m−2 for a cesium vapour pressure of ~4×10−8 mbar in the source. We use this slow atom beam, instead of cesium vapour, to load a 3D moving optical molasses that feeds a continuous cold atom fountain. We obtain a gain of a factor ~20 in the atomic flux launched by the fountain.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

P.R. Berman, Atom Interferometry (Academic Press, San Diego, 1997)
Stuhler, J., Fattori, M., Petelski, T., Tino, G.M., J. Opt. B Quantum S. O. 5, S75 (2003) CrossRef
S. Chelkowski, Diplomarbeit, Institut of Quantum Physics, University of Hannover, 2002 (unpublished)
Sanguinetti, S., Guéna, J., Lintz, M., Jacquier, Ph., Wasan, A., Bouchiat, M.-A., Eur. Phys. J. D 25, 3 (2003) CrossRef
Natarajan, V., Eur. Phys. J. D 32, 33 (2005) CrossRef
Wynands, R., Weyers, S., Metrologia 42, S64 (2005) CrossRef
Vanier, J., Appl. Phys. B 81, 421 (2005) CrossRef
H.J. Metcalf, P. van der Straten, Laser Cooling and Trapping (Springer-Verlag, New York, 1999)
A. Grabowski, R. Heidemann, R. Löw, J. Stuhler, T. Pfau, arXiv:quant-ph/0508082 v1 (2005)
G. Dudle, A. Joyet, N. Castagna, G. Mileti, P. Thomann, C. Mandache, T. Acsente, in Proceedings of the 16th EFTF, St Petersburg, 12-14 March 2002 (St Petersburg State University of Aerospace Instrumentation, Russia), E-014-E-016 (2002)
Joyet, A., Mileti, G., Thomann, P., Dudle, G., IEEE T. Instrum. Meas. 50, 150 (2001) CrossRef
Composeo, A., Piombini, A., Cervelli, F., Tantussi, F., Fuso, F., Arimondo, E., Opt. Commun. 200, 231 (2001) CrossRef
Berthoud, P., Fretel, E., Thomann, P., Phys. Rev. A 60, R4241 (1999) CrossRef
Joffe, M.A., Ketterle, W., Martin, A., Pritchard, D.E., J. Opt. Soc. Am. B 10, 2257 (1993) CrossRef
Kohel, J.M., Ramirez-Serrano, J., Thompson, R.J., Maleki, L., Bliss, J.L., Libbrecht, K.G., J. Opt. Soc. Am. B 20, 1161 (2003) CrossRef
Cacciapuoti, L., Castrillo, A., de Angelis, M., Tino, G.M., Eur. Phys. J. D 15, 245 (2001) CrossRef
Wang, H., Buell, W.F., J. Opt. Soc. Am. B 20, 2025 (2003) CrossRef
Watts, R.N., Wieman, C.E., Opt. Lett. 11, 291 (1986) CrossRef
Ovchinnikov, Y.B., Opt. Commun. 249, 473 (2005). CrossRef
Lu, Z.T., Corvin, K.L., Renn, M.J., Anderson, M.H., Cornell, E.A., Wieman, C.E., Phys. Rev. Lett. 77, 3331 (1996) CrossRef
Chen, H., Riis, E., Appl. Phys. B 70, 665 (2000) CrossRef
Berthoud, P., Joyet, A., Dudle, G., Sagna, N., Thomann, P., Europhys. Lett. 41, 141 (1998) CrossRef
Cren, P., Roos, C.F., Aclan, A., Dalibard, J., Guéry-Odelin, D., Eur. Phys. J. D 20, 107 (2002) CrossRef
Schoser, J., Batär, A., Löw, R., Schweikhard, V., Grabowski, A., Ovchinnikov, Y.B., Pfau, T., Phys. Rev. A 66, 023410-1 (2002) CrossRef
Dieckmann, K., Spreeuw, R.J.C., Weidemüller, M., Walraven, J.T.M., Phys. Rev. A 58, 3891 (1998) CrossRef
Lecomte, S., Fretel, E., Mileti, G., Thomann, P., Appl. Optics 39, 1426 (2000) CrossRef
C.W. Goodwin, private communication. Calculations for a $45^{\circ}$ angle of incidence and $\lambda =852$ nm give $R_{P}=96.66$ % and $R_{S}=97.45$ % for Au and $R_{P}=98.45$ % and $R_{S}=99.21$ % for Ag.