Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T12:50:14.394Z Has data issue: false hasContentIssue false

A multi-ion beam microanalysis approach for the characterization of plasma polymerized allylamine films

Published online by Cambridge University Press:  28 October 2011

E. Punzón-Quijorna
Affiliation:
Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid, Spain Centro de Microanálisis de Materiales CMAM, Universidad Autónoma de Madrid, 28049 Madrid, Spain
V. Torres-Costa
Affiliation:
Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid, Spain
A. Climent-Font
Affiliation:
Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid, Spain Centro de Microanálisis de Materiales CMAM, Universidad Autónoma de Madrid, 28049 Madrid, Spain
M. Manso-Silván*
Affiliation:
Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid, Spain

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A full characterization of plasma polymerized biofunctional films requires the use of multi-analytical approaches to determine the chemical composition, topography and potential interaction mechanisms of such films with biomolecules and cells. In this work we aim at underlining the versatility of ion-based techniques to contribute to the chemical characterization of plasma polymerized surfaces. The simultaneous use of energy recoil detection (ERD) and Rutherford backscattering (RBS) spectroscopies with incident He ions is an example of this versatility. Performing sequential measurements and the use of correlating computing tools for ERD-RBS interpretation allows providing in-depth concentration profiles of light elements, including namely hydrogen. More accurate analysis of light elements in polymer films can be increased by looking for particular ions with resonant backscattering responses (i.e., non-Rutherford Scattering). In particular, proton beams of 1.765 MeV are used to increase the detection of C and N, and particular incidence and detector angles to diminish the Si substrate contribution. These analytical tools have been applied to allylamine films and multi-layers crosslinked in a capacitive plasma onto both Si and porous Si substrates.

Type
Research Article
Copyright
© EDP Sciences, 2011

References

Tatoulian, M., Arefi-Khonsari, F., Borra, J.P., Plasma Process. Polym. 4, 360 (2007)CrossRef
Hollahan, J.R., Wydeven, T., Science 179, 500 (1973)CrossRef
Formosa, F., Sanchez-Vaquero, V., Rodriguez-Navas, C., Munoz-Noval, A., Tejera-Sanchez, N., Silvan, M.M., Garcia-Ruiz, J.P., Marletta, G., Plasma Process. Polym. 7, 794 (2010)CrossRef
Song, S.J., Kim, K.S., Kim, K.H., Li, H.J., Kim, J.H., Jeong, M.H., Kim, B.H., Ko, Y.M., Cho, D.L., J. Mater. Chem. 19, 3248 (2009)CrossRef
Shearer, J.C., Fisher, M.J., Hoogeland, D., Fisher, E.R., Appl. Surf. Sci. 256, 2081 (2010)CrossRef
Manso, M., Rodriguez, A., Paul, A., Barrero, J., Rossi, F., Surf. Interface Anal. 38, 322 (2006)CrossRef
Thierry, B., Jasieniak, M., de Smet, L., Vasilev, K., Griesser, H.J., Langmuir 24, 10187 (2008)CrossRef
Matsui, Y., Yoshizawa, M., Hoshino, T., Muguruma, H., Sens. Mater. 20, 289 (2008)
Kurosawa, S., Kamo, N., Arimura, T., Sekiya, A., Muratsugu, M., Jpn. J. Appl. Phys. 34, 3925 (1995)CrossRef
Chen, K.S., Chen, S.C., Lin, H.R., Yan, T.R., Tseng, C.C., Mater. Sci. Eng. C 27, 716 (2007)CrossRef
Finke, B., Luethen, F., Schroeder, K., Mueller, P.D., Bergeniann, C., Frant, M., Ohl, A., Nebe, B.J., Biomaterials 28, 4521 (2007)CrossRef
Buttiglione, M., Vitiello, F., Sardella, E., Petrone, L., Nardulli, M., Favia, P., d’Agostino, R., Gristina, R., Biomaterials 28, 2932 (2007)CrossRef
Ren, J.R., Wang, J., Sun, H., Huang, N., Appl. Surf. Sci. 255, 263 (2008)
Mishra, G., McArthur, S.L., Langmuir 26, 9645 (2010)CrossRef
Behnisch, J., Tyczkowski, J., Gazicki, M., Pela, I., Hollander, A., Ledzion, R., Surf. Coat. Technol. 98, 872 (1998)CrossRef
Silvan, M.M., Valsesia, A., Hasiwa, M., Gilliland, D., Ceccone, G., Rossi, F., Chem. Vapor Depos. 13, 211 (2007)CrossRef
Martin-Palma, R.J., Manso-Silvan, M., Torres-Costa, V., J. Nanophotonics 4, 042502 (2010)CrossRef
Hamerli, P., Weigel, T., Groth, T., Paul, D., Surf. Coat. Technol. 174, 574 (2003)CrossRef
Yoon, S.F., Rusli, X., Ahn, J., Zhang, Q., Yang, C.Y., Yang, H., Watt, F., Thin Solid Films 340, 62 (1999)CrossRef
Climent-Font, A., Cervera, M., Hernandez, M.J., Munoz-Martin, A., Piqueras, J., Nucl. Instr. Methods B 266, 1498 (2008)CrossRef
Mayer, M., in Proc. of 15th Int. Conf. on the Application of Accelerators in Research and Industry, vol. 475, edited by Duggan, J.L., Morgan, I.L. (AIP Press, New York, 1999), p. 541Google Scholar
Silvan, M.M., Gago, R., Valsesia, A., Font, A.C., Duart, J.M.M., Rossi, F., Nucl. Instr. Methods B 257, 496 (2007)CrossRef