Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-19T11:55:17.937Z Has data issue: false hasContentIssue false

Laser structuring of thin-film solar cells on polymers

Published online by Cambridge University Press:  10 March 2009

P. Gečys
Affiliation:
Laboratory for Applied Research, Institute of Physics, Savanoriu Ave. 231, 02300 Vilnius, Lithuania
G. Račiukaitis*
Affiliation:
Laboratory for Applied Research, Institute of Physics, Savanoriu Ave. 231, 02300 Vilnius, Lithuania
M. Gedvilas
Affiliation:
Laboratory for Applied Research, Institute of Physics, Savanoriu Ave. 231, 02300 Vilnius, Lithuania
A. Selskis
Affiliation:
Institute of Chemistry, A. Goštauto 9, 01108 Vilnius, Lithuania
Get access

Abstract

A permanent growth of the thin-film electronics market stimulates the development of versatile technologies for patterning thin-film materials on flexible substrates. High repetition rate lasers with a short pulse duration offer new possibilities for high efficiency structuring of conducting, semi-conducting and isolating films. Lasers with the picosecond pulse duration were applied in structuring the complex multilayered Cu(InGa)Se2 (CIGS) solar cells deposited on the polyimide substrate. The wavelength of laser radiation was adjusted depending on optical properties both of the film and the substrate. A narrow processing window of laser fluence and pulse overlap was estimated with both 1064 nm and 355 nm irradiation to remove the molybdenum backcontact off the substrate. The selective removal of ITO, ZnO and CIGS layers was achieved with 355 nm irradiation in the multilayer structure of CIGS without significant damage to the underneath layers. Use of the flat-top laser beam profile should prevent inhomogeneity in ablation. The EDS analysis did not show residues of molybdenum projected onto the walls of ablated channel due to melt extrusion. Processing with picosecond lasers should not cause degradation of photo-electrical properties of the solar cells but verification is required.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dhere, N.G., Sol. Energy Mater. Sol. Cells 91, 1376 (2007) CrossRef
Tanaka, R., Takaoka, T., Mizukami, H., Arai, T., Iwai, Y., Proc. SPIE 5063, 370 (2003) CrossRef
Ashkenasi, D., Rosenfeld, A., Proc. SPIE 4637, 169 (2002) CrossRef
Hermann, J., Benfarah, M. et al., J. Phys. D 39, 453 (2006) CrossRef
Compaan, A.D., Matulionis, I., Nakade, S., Opt. Lasers Eng. 34, 15 (2000) CrossRef
Molpeceres, C., Lauzurica, S., Ocana, J.L., Gandia, J.J., Urbina, L., Carabe, J., J. Micromech. Microeng. 15, 1271 (2005) CrossRef
Kijima, S., Nakada, T., Jpn Appl. Phys. Expr. 1, 075002 (2008) CrossRef
Ra, G. $\rm\check{c}$ iukaitis, M. Brikas, M. Gedvilas, T. Rakickas, Appl. Surf. Sci. 253, 6584 (2007)
Ra, G. $\rm\check{c}$ iukaitis, M. Brikas, M. Gedvilas, G. Dar $\rm\check{c}$ ianovas, J. Laser Micro/Nanoeng. 2, 1 (2007)
Ra, G. $\rm\check{c}$ iukaitis, M. Brikas, G. Dar $\rm\check{c}$ ianovas, D. Ruthe, K. Zimmer, Proc. SPIE 6732, 67320C (2007)
Liu, J.M., Opt. Lett. 7, 196 (1982) CrossRef
Jee, Y., Becker, M.F., Walser, R.M., J. Opt. Soc. Am. B 5, 648 (1988) CrossRef
Rockett, A., Thin Solid Films 361, 330 (2000) CrossRef