Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-07T11:41:30.754Z Has data issue: false hasContentIssue false

Laminar flow through a model of collapsed veins. Morphometric response of endothelial vascular cells to a longitudinal shear stress non uniform cross-wise

Published online by Cambridge University Press:  15 October 1999

C. Haond
Affiliation:
Department of Pharmacology, Laboratoire INNOTHERA, 94110 Arcueil, France
C. Ribreau
Affiliation:
Laboratoire de Physiologie du Mouvement, de Paris Sud, 91403 Orsay, France
O. Boutherin-Falson
Affiliation:
Department of Pharmacology, Laboratoire INNOTHERA, 94110 Arcueil, France
M. Finet
Affiliation:
Department of Pharmacology, Laboratoire INNOTHERA, 94110 Arcueil, France
Get access

Abstract

We studied the response of vascular endothelial cells to unidirectional laminar flow through collapsed veins. An original experimental set-up was developed, to generate and to map shear stresses with local transverse gradients. This enabled us to detect changes in the shape of endothelial cells when viscous fluid flow was applied. Porcine vena cava endothelial cells were seeded on a proof sample placed in the specifically designed flow chamber. Postconfluent endothelial cells were continuously exposed to a maximum calculated wall shear stress of 0.11 Pa (1.1 dyne/cm2) and to a maximum calculated transverse gradient of 0.045 Pa/mm for 20 hours. This paper deals with the morphometry of single cells and the angle of their major axes with respect to the flow direction. Cells in confluent monolayer underwent a shear stress intensity-dependent change in shape with a decrease of shape index from 0.55 to 0.34. The cells were not uniformly oriented in the direction of flow axes except in the region of larger gradient. In this particular region, the cells had a low angle with respect to the flow axes at some coordinates or exhibited reversal of their major and minor axes with a doubling of cell area. These observations suggest that there have been specific cytoskeleton rearrangements, associated with specific resultant forces over the cellular surface.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ando, J., Kamiya, A., Jpn Heart J. 37, 19 (1996). CrossRef
Ando, J., Kamiya, A., Med. Biol. Engng. 5, 245 (1993).
Barbee, K.A., Davies, P.F., Lal, R., Circ. Res. 74, 163 (1994). CrossRef
Bhat, V.D, Truskey, G.A., Reichert, W.M., J. Biomed. Mater. Res. 41, 377 (1998). 3.0.CO;2-9>CrossRef
Consigny, P.M., Vitali, N.J., J. Vasc. Interv. Radiol. 9, 479 (1998). CrossRef
P.F. Davies, Endothelial cells, hemodynamique forces, and the localization of athrosclerosis, edited by D. Ryan (CRC, 1986), Vol. II, pp. 123-138.
Davies, P.F., Barbee, K.A., Volin, M.V., Robotewskyj, A., Chen, J., Joseph, L., Griem, M.L., Wernick, M.N., Jacobs, E., Polacek, D.C., De Paola, N., Barakat, A.I., Ann. Rev. Physiol. 59, 527 (1997). CrossRef
Davies, P.F., Mundel, T., Barbee, K.A., J. Biomechanics 28, 1553 (1995). CrossRef
Davies, P.F., Tripathi, S.C., Circul. Res. 72, 239 (1993). CrossRef
De Paola, N., Gimbrone, M.A., Davies, P.F., Dewey Jr, C.F., Arterioscl. Thromb. 12, 1254 (1992). CrossRef
Dewey Jr, C.F., Bussolari, S.R., Gimbrone Jr, M.A., Davies, P.F., J. Biomech. Eng. 103, 177 (1981). CrossRef
P. Fourgeau, R. Perrault, M. Parentin, C. Ribreau, Eur. Phys. J. AP (submitted).
M.A. Gimbrone Jr, Culture of vascular endothelium, edited by T.H. Spaet (Progress in Hemostasis and Thrombosis, Grune and Stratton, New York, 1976), Vol. III, pp. 1-28.
Kataoka, N., Ujita, S., Sato, M., Med. Biol. Eng. Comp. 36, 122 (1998). CrossRef
Levesque, M.J., Nerem, R.M., J. Biomech. Eng. 107, 341 (1985). CrossRef
Levesque, M.J., Sprague, E.A., Schwartz, C.J., Nerem, R.M., Biotechn. Prog. 5, 1 (1989). CrossRef
Malek, A.M., Izumo, S., Biomechanics 28, 1515 (1995). CrossRef
Nagel, T., Resnick, N., Atkinson, W.J., Dewey Jr, C.F., Grimbrone Jr, M.A., J. Clin. Invest. 94, 885 (1994). CrossRef
Naili, S., Ribreau, C., Eur. Phys. J. AP 5, 95 (1999). CrossRef
Nerem, R.M., ASGSB Bull. 4, 87 (1991).
Olesen, S.P., Clapham, D.E., Davies, P.F., Nature 331, 168 (1988). CrossRef
Papadaki, M., Eskin, S.G., Biotechnol. Prog. 13, 209 (1997). CrossRef
Peggy, R.G., Nerem, R.M., J. Cell. Physiol. 163, 179 (1995).
Ribreau, C., Naili, S., Bonis, M., Langlet, A., ASME J. Biomech. Eng. 115, 432 (1993). CrossRef
C. Ribreau, M. Thiriet, Biomécanique des fluides et des tissus, edited by M. Jaffrin, F. Goubel (Masson, Paris, 1998), pp. 131-178.
Satcher, R., Dewey Jr, C.F., Hartwig, J.H., Microcirculation 4, 439 (1997). CrossRef
Sato, M., Ohshima, N., Biorheology 31, 143 (1994).
Sato, M., Ohshima, N., Nerem, R.M., J. Biomechanics 29, 461 (1996). CrossRef
Suciu, A., Civelekoglu, G., Tardy, Y., Meister, J.J., Bull. Math. Biol. 59, 1029 (1997). CrossRef
Tardy, Y., Nagel, T., Gimbrone Jr, M.A., Dewey Jr, C.F., Arterioscler. Thromb. Vasc. Biol. 17, 3102 (1997). CrossRef
Tedgui, A., Bardy, B.I. Lévy, Médecine Science 13, 790 (1997). CrossRef
Thoumine, O., Ziegler, T., Girard, P.R., Nerem, R.M., Experim. Cell Res. 219, 427 (1995). CrossRef
Walpola, P.L., Gotlieb, A.I., Cybulsky, M.I., Langille, B.L., Thromb. Vasc. Biol. 15, 2 (1995). CrossRef
Ziegler, T., Nerem, R.M., Arterioscler. Thromb. 14, 636 (1994). CrossRef