Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T17:45:11.300Z Has data issue: false hasContentIssue false

Is actinometry reliable for monitoring Si and silicone halides produced in silicon etching plasmas? A comparison with their absolute densities measured by UV broad band absorption

Published online by Cambridge University Press:  22 February 2006

M. Kogelschatz*
Affiliation:
Laboratoire de Spectrométrie Physique, Université Joseph Fourier-Grenoble, BP 87, 38402 St Martin d'Hères, France Laboratoire des Technologies de la Microélectronique, CNRS, 17 rue des Martyrs, CEA-LETI, 38054 Grenoble Cedex 9, France
G. Cunge
Affiliation:
Laboratoire des Technologies de la Microélectronique, CNRS, 17 rue des Martyrs, CEA-LETI, 38054 Grenoble Cedex 9, France
N. Sadeghi
Affiliation:
Laboratoire de Spectrométrie Physique, Université Joseph Fourier-Grenoble, BP 87, 38402 St Martin d'Hères, France
Get access

Abstract

SiClx radicals, the silicon etching by-products, are playing a major role in silicon gate etching processes because their redeposition on the wafer leads to the formation of a SiOClx passivation layer on the feature sidewalls, which controls the final shape of the etching profile. These radicals are also the precursors to the formation of a similar layer on the reactor walls, leading to process drifts. As a result, the understanding and modelling of these processes rely on the knowledge of their densities in the plasma. Actinometry technique, based on optical emission, is often used to measure relative variations of the density of the above mentioned radicals, even if it is well known that the results obtained with this technique might not always be reliable. To determine the validity domain of actinometry in industrial silicon-etching high density plasmas, we measure the RF source power and pressure dependences of the absolute densities of SiClx (x = 0−2), SiF and SiBr radicals, deduced from UV broad band absorption spectroscopy. These results are compared to the evolution of the corresponding actinometry signals from these radicals. It is shown that actinometry predicts the global trends of the species density variations when the RF power is changed at constant pressure (that is to say when only the electron density changes) but it completely fails if the gas pressure, hence the electron temperature, changes.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

M.A. Lieberman, A.J. Lichtenberg, Principle of plasma discharges and material processing (Jones Wiley & Sons, New York, 1994)
ITRS, International Technology Roadmap for Semiconductors (2002), http://public.itrs.net
Detter, X., Palla, R., Thomas-Boutherin, I., Pargon, E., Cunge, G., Joubert, O., Vallier, L., J. Vac. Sci. Technol. B 21, 2174 (2003) CrossRef
Vallier, L., Foucher, J., Detter, X., Pargon, E., Joubert, O., Cunge, G., J. Vac. Sci. Technol. B 21, 904 (2003) CrossRef
Cunge, G., Inglebert, R.L., Joubert, O., Vallier, L., Sadeghi, N., J. Vac. Sci. Technol. B 20, 2137 (2002) CrossRef
Lee, C., Graves, D.B., Lieberman, M.A., Plasma Chem. Plasma P. 16, 99 (1996) CrossRef
Ullal, S.J., Godfrey, A.R., Edelberg, E.A., Braly, L.B., Vahedi, V., Aydil, E.S., J. Vac. Sci. Technol. A 20, 43 (2002) CrossRef
Francis, A., Czarnetzki, U., Döbele, H.F., Sadeghi, N., Appl. Phys. Lett. 71, 3796 (1997) CrossRef
Coburn, J.W., Chen, M., J. Appl. Phys. 51, 3134 (1980) CrossRef
Booth, J.P., Joubert, O., Pelletier, J., Sadeghi, N., J. Appl. Phys. 69, 618 (1991) CrossRef
Donnelly, V.M., J. Phys. D Appl. Phys. 37, R217 (2004) CrossRef
Chevolleau, T., Fukarek, W., Plasma Sources Sci. Technol. 9, 568 (2000) CrossRef
Bogart, K.H.A., Donnelly, V.M., J. Appl. Phys. 86, 1822 (1999) CrossRef
Tsuchizawa, T., Takahashi, C., Matsuo, S., Jpn J. Appl. Phys. 33, 6019 (1994) CrossRef
Cunge, G., Joubert, O., Sadeghi, N., J. Appl. Phys. 94, 6285 (2003) CrossRef
Ullal, S.J., Kim, T.W., Vahedi, V., Aydil, E.S., J. Vac. Sci. Technol. A 21, 589 (2003) CrossRef
Cruden, B.A., Rao, M.V.V.S., Sharma, S.P., Meyyappan, M., J. Appl. Phys. 93, 5053 (2003) CrossRef
Miwa, K., Mukai, T., J. Vac. Sci. Technol. B 20, 2120 (2002) CrossRef
Kogelschatz, M., Cunge, G., Sadeghi, N., J. Phys. D Appl. Phys. 37, 1954 (2004) CrossRef
Kogelschatz, M., Cunge, G., Joubert, O., Vallier, L., Sadeghi, N., Contrib. Plasma Phys. 44, 413 (2004) CrossRef
R.W.B. Pearse, A.G. Gaydon, The Identification of Molecular Spectra (Chapman & Hall LTD, London, 1965)
Suzuki, M., Washida, N., Inoue, G., Chem. Phys. Lett. 131, 24 (1986) CrossRef
Cunge, G., Kogelschatz, M., Joubert, O., Sadeghi, N., Plasma Sources Sci. Technol. 14, S42 (2005) CrossRef
Andrew, Y., Abraham, I., Booske, J.H., Lu, Z.C., Wendt, A.E., J. Appl. Phys. 88, 3208 (2000) CrossRef
Augustyniak, E., Chew, K.H., Shohet, J.L., Woods, R.C., J. Appl. Phys. 85, 87 (1999) CrossRef
W.L. Wiese, M.W. Smith, B.M. Miles, Atomic Transition Probabilities (US Department of Commerce, National Bureau of Standards, NSRDS-NBS22, 1969)
Ohebsian, D., Sadeghi, N., Trassy, C., Mermet, J.M., Opt. Commun. 32, 81 (1980) CrossRef
Sakakibara, M., Hiramatsu, M., Goto, T., J. Appl. Phys. 69, 3467 (1991) CrossRef
Malyshev, M.V., Donnelly, V.M., J. Appl. Phys. 87, 1642 (2000) CrossRef
Mehr, F.J., Biondi, M.A., Phys. Rev. 176, 322 (1968) CrossRef
K.P. Huber, G. Herzberg, Constant of diatomic molecules (Van Nostrand Reinhold Company, Toronto, 1979)
Malyshev, M.V., Donnelly, V.M., J. Vac. Sci. Technol. A 15, 550 (1997) CrossRef