Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-28T20:09:09.245Z Has data issue: false hasContentIssue false

Fourier analysis of Ramsey fringes observed in a continuous atomic fountain for in situ magnetometry

Published online by Cambridge University Press:  28 September 2011

G. Di Domenico*
Affiliation:
Laboratoire Temps-Fréquence, Université de Neuchâtel, Avenue de Bellevaux 51, 2000 Neuchâtel, Switzerland
L. Devenoges
Affiliation:
Laboratoire Temps-Fréquence, Université de Neuchâtel, Avenue de Bellevaux 51, 2000 Neuchâtel, Switzerland
A. Stefanov
Affiliation:
Swiss Federal Office of Metrology, METAS, Lindenweg 50, 3003 Bern-Wabern, Switzerland
A. Joyet
Affiliation:
Laboratoire Temps-Fréquence, Université de Neuchâtel, Avenue de Bellevaux 51, 2000 Neuchâtel, Switzerland
P. Thomann
Affiliation:
Laboratoire Temps-Fréquence, Université de Neuchâtel, Avenue de Bellevaux 51, 2000 Neuchâtel, Switzerland
Get access

Abstract

Ramsey fringes observed in an atomic fountain are formed by the superposition of the individual atomic signals. Due to the atomic beam residual temperature, the atoms have slightly different trajectories and thus are exposed to a different average magnetic field, and a velocity-dependent Ramsey interaction time. As a consequence, both the velocity distribution and magnetic field profile are imprinted in the Ramsey fringes observed on Zeeman sensitive microwave transitions. In this work, we perform a Fourier analysis of the measured Ramsey signals to retrieve both the time-averaged magnetic field associated with different trajectories and the velocity distribution of the atomic beam. We use this information to reconstruct Ramsey fringes and establish an analytical expression for the value of the microwave frequency for which individual Ramsey fringes add most constructively and are thus visible in the microwave spectrum.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ramsey, N.F., Phys. Rev. 78, 695 (1950)CrossRef
Clairon, A., Salomon, C., Guellati, S., Phillips, W.D., Europhys. Lett. 16, 165 (1991)CrossRef
Wynands, R., Weyers, S., Metrologia 42, 64 (2005)CrossRef
Joyet, A., Domenico, G.D., Gulati, G., Thomann, P., Stefanov, A., in Proc. of 7th Symposium on Frequency Standards and Metrology (World Scientific, Singapore, 2009), p. 559
Joyet, A., Mileti, G., Dudle, G., Thomann, P., IEEE Trans. Instrum. Meas. 50, 150 (2001)CrossRef
Guéna, J., Dudle, G., Thomann, P., Eur. Phys. J. Appl. Phys. 38, 183 (2007)CrossRef
Jarvis, S., Metrologia 10, 87 (1974)CrossRef
Boulanger, J., Metrologia 23, 37 (1986)CrossRef
Shirley, J., Velocity distributions from the Fourier transforms of Ramsey line shapes, in Proc. of 43rd Ann. Symposium on Frequency Control, Denver, Colorado, 1989, pp. 162167
Makdissi, A., de Clercq, E., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 637 (1997)CrossRef
Shirley, J., IEEE Trans. Instrum. Meas. 46, 117 (1997)CrossRef
Castagna, N., Guéna, J., Plimmer, M.D., Thomann, P., Eur. Phys. J. Appl. Phys. 34, 21 (2006)CrossRef
Berthoud, P., Fretel, E., Thomann, P., Phys. Rev. A 60, R4241 (1999)CrossRef
Di Domenico, G., Devenoges, L., Dumas, C., Thomann, P., Phys. Rev. A 82, 053417 (2010)CrossRef
Vanier, J., Audoin, C., The Quantum Physics of Atomic Frequency Standards (Adam Hilger, Bristol, 1989)CrossRefGoogle Scholar