Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-29T11:57:30.855Z Has data issue: false hasContentIssue false

Finite-element analysis of positive and negative corona discharge in wire-to-plane system

Published online by Cambridge University Press:  24 June 2006

N. Oussalah
Affiliation:
Laboratoire de Génie Électrique, Université A. Mira de Béjaïa, 06000 Béjaïa, Algeria
Y. Zebboudj*
Affiliation:
Laboratoire de Génie Électrique, Université A. Mira de Béjaïa, 06000 Béjaïa, Algeria
Get access

Abstract

This paper deals with positive and negative corona discharge in atmospheric air using a wire-to-plane system. The Poisson's equation is solved numerically using the finite-element method and the current continuity equation. The space charge density is updated using the simplified method of characteristics, where the ion diffusion is neglected. The numerical model takes into account the avalanche length of the corona discharge and the potential corresponding to the minimum ionisation field is directly introduced in the method on the border of the ionisation region. The end geometry of the linear biased probe without wraparound bias plates has been adapted to a wire-to-plane system for use in DC corona discharge. The current density and the electric field are measured; their spatial distributions are given and compared with the computed values. The agreement between the calculated values and those obtained experimentally is satisfactory. The per unit electric field and current density are also represented by a unique function.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Deutsch, W., Ann. Phys. 5, 588 (1933) CrossRef
Jones, J.E., J. Phys. D Appl. Phys. 25, 1749 (1992) CrossRef
J.L. Davis, J.F. Hoburg, J. Electrostat. 18, (1986)
A. Bouziane, M.C. Taplamapacioglu, K. Hidaka, J.E. Jones, A.R. Rowlands, R.T. Waters, U.P.E.C. Aberdeen, UK, 1990, pp. 207–210
N.A. Kaptzov, Elektricheskie Invlentiia v Gazakh i Vakuumme (OGIZ Moscow (URSS), 1947), pp. 587–630
F.W. Peek, Dielectric phenomena in H.V. engineering (Mc Graw Hill, 1929), pp. 52–80
Al-Hamouz, Z., Electr. Pow. Syst. Res. 48, 57 (1998) CrossRef
Abdel-Salam, M., Al-Hamouz, Z., IEEE T. Ind. Appl. 31, 484 (1995) CrossRef
Y. Zebboudj, thèse de Doctorat, Octobre 1988, Université Paris 6 (France)
Zebboudj, Y., Hartmann, G., Eur. Phys. J. Appl. Phys. 7, 167 (1999) CrossRef
Zebboudj, Y., Iken, R., Eur. Phys. J. Appl. Phys. 10, 211 (2000) CrossRef
J.S. Townsend, Die ionisation der gase (Handbuchs der radiologie von MARX, Leipzig, 1920), Bd. I
J.J. Thomson, G.P. Thomson, Conduction of electricity through gases (London CUP, 1933), Vol. 2
G. Hartmann, IEEE T. Ind. Appl. IA-20, 1647 (1994)
Zebboudj, Y., Ikene, R., Hartmann, G., Eur. Phys. J. Appl. Phys. 6, 195 (1999) CrossRef
A. Bouziane, G. Hartmann, J.E. Jones, R.T. Waters, Y. Zebboudj, I.C.G.D.A. IX, Venisia, Italy, 1988, pp. 527–530
N.L. Allen, P. Clark, D. Dring, R.T. Waters, I.C.G.D.A. VII, Oxford, UK, 1985, pp. 163–166
Yala, H., Kasdi, A., Zebboudj, Y., Eur. Phys. J. Appl. Phys. 21, 45 (2003) CrossRef
Warburg, E., Wied. Ann. 67, 68 (1899)
A. Warburg, Handbuch der Physik (Springer, Berlin, 1927), Vol. 14, pp. 154–155
J.E. Jones, Proc. R. Soc. London A 1033 (1997)