Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-20T02:48:53.796Z Has data issue: false hasContentIssue false

Extracting parameters from the current-voltage characteristics of polycrystalline octithiophene thin film field-effect transistors

Published online by Cambridge University Press:  28 June 2007

R. Bourguiga*
Affiliation:
Laboratoire de Physique des Matériaux : Structures et Propriétés, Groupe Composants et Dispositifs Nanométriques, Faculté des Sciences de Bizerte, 7021 Jarzouna-Bizerte, Tunisia
M. Mahdouani
Affiliation:
Laboratoire de Physique des Matériaux : Structures et Propriétés, Groupe Composants et Dispositifs Nanométriques, Faculté des Sciences de Bizerte, 7021 Jarzouna-Bizerte, Tunisia
S. Mansouri
Affiliation:
Laboratoire de Physique des Matériaux : Structures et Propriétés, Groupe Composants et Dispositifs Nanométriques, Faculté des Sciences de Bizerte, 7021 Jarzouna-Bizerte, Tunisia
G. Horowitz
Affiliation:
ITODYS, CNRS-UMR 7086, University Denis-Diderot, 1 rue Guy de la Brosse, 75005 Paris, France
Get access

Abstract

Organic field-effect transistors (OFETs) in which the active semiconductor is made of polycrystalline octithiophene (8T) were fabricated and characterized. Several methods have been used to extract the parameters of the polycrystalline (8T) transistors as function of gate voltage at room and at low temperatures. These parameters such as the mobility, the threshold voltage, contact resistance and density of traps are extracted from the current-voltage characteristics of OFETs. The first method consists of deriving the drain current as function of gate voltage (transconductance), leading to the so-colled field effect mobility. It appears that the data must be corrected for the substantial source and drain contact resistance. In the second method, the carrier mobility has been corrected for the contact resistance. It is found to increase quasi linearly with gate voltage. Therefore, the contact resistances have been directly extracted from the experimental channel conductance. In the third method, data are interpreted according the multiple thermal trapping and release model using a power law dependence of the mobility with gate voltage together with a constant resistance. Finally, using a model where charge transport is limited by trapping and thermal release at localized states located at grain boundaries, the barrier height at grain boundaries in polycrystalline octhithiophene FETs has been estimated. It is shown that is gate bias dependent.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Horowitz, G., Adv. Mater. 10, 365 (1998) 3.0.CO;2-U>CrossRef
Shur, M., Hack, M., J. Appl. Phys. 55, 3831 (1984) CrossRef
Dimitrakopoulos, C.D., Brown, A.R., Pomp, A., J. Appl. Phys. 80, 2501 (1996) CrossRef
Lin, Y.Y., Gundlach, D.J., Jackson, T.N., Nelson, S.F., IEEE Trans. Devices 44, 1325 (1997) CrossRef
Bourguiga, R., Garnier, F., Horowitz, G., Hajlaoui, R., Delannoy, P., Hajlaoui, M., Bouchriha, H., Eur. Phys. J. Appl. Phys. 14, 121 (2001) CrossRef
Brwon, A.R., de Leeuw, D.M., Hvinga, E.E., Pomp, A., Synth. Met. 68, 65 (1994) CrossRef
Horowitz, G., Hajlaoui, M.E., Hajlaoui, R., J. Appl. Phys. 87, 4456 (2000) CrossRef
Meijer, E.J., Gelinck, G.H., van Veenendaal, E., Huisman, B.H., de Leeuw, D.M., Klapwijk, T.M., Appl. Phys. Lett. 82, 4576 (2003) CrossRef
Street, R.A., Salleo, A., Appl. Phys. Lett. 81, 2887 (2002) CrossRef
Horowitz, G., Peng, X., Fichou, D., Garnier, F., J. Appl. Phys. 67, 528 (1990) CrossRef
Horowitz, G., Delannoy, P., J. Appl. Phys. 70, 469 (1991) CrossRef
Horowitz, G., Hajlaoui, R., Delannoy, P., J. Phys. III France 5, 1786 (1995) CrossRef
S.M. Sze, Physics of Semiconductor Devices (John Wiley, New York, 1981)
Horowitz, G., Hajlaoui, R., Bourguiga, R., Hajlaoui, M.E., Synth. Metal. 101, 401 (1999) CrossRef
Dimitrakopoulos, C.D., Purushothaman, S., Kymissis, J., Callegari, A., Shaw, J.M., Science 283, 822 (1999) CrossRef
Horowitz, G., Hajlaoui, R., Fichou, D., Elkassmi, A., J. Appl. Phys. 85, 3202 (1999) CrossRef
Jain, S., Proc, IEE., Part I., Solid-State Electron Devices 135, 162 (1988)
Necliudov, P.V., Shur, M.S., Gundlach, D.J., Jackson, T.N., Solid-State Electron 47, 259 (2003) CrossRef
Klauk, H., Schmid, G., Weber, W., Zhou, L., Sheraw, C.D., Nichols, J.A., Jackson, T.N., Solid-State Electron. 47, 297 (2003) CrossRef
Zaumseil, J., Baldwin, K.W., Rogers, J.A., J. Appl. Phys. 93, 6117 (2003) CrossRef
Luan, S., Neudeck, G.W., J. Appl. Phys. 72, 766 (1992) CrossRef
Horowitz, G., Lang, P., Mottaghi, M., Aubin, H., Adv. Funct. Mater. 14, 1069 (2004) CrossRef
Spear, W.E., Le Comber, P.G., J. Non-Cryst. Solids 8–10, 727 (1972) CrossRef
N.F. Mott, R.W. Gurney, Electronic Processes in Ionic Crystals (Clarendon Press, Oxford, UK, 1940)
Dodabalapur, A., Torsi, L., H.E. katz, Science 268m, 270 (1995) CrossRef
Farmakis, F.V., Brini, J., Kamarinos, G., Angelis, C.T., Dimitriadis, C.A., Miyasakam, M., IEEE Trans. Electron Devices 48, 701 (2001) CrossRef
Horowitz, G., Synth. Metal. 138, 101 (2003) CrossRef
Knipp, D., Street, R.A., Völkel, A., Ho, J., J. Appl. Phys. 93, 347 (2003) CrossRef
Horowitz, G., Hajlaoui, M.E., Synth. Metal. 122, 185 (2001) CrossRef
Van Heek, H.F., Solid-State Electron. 11, 459 (1968) CrossRef
Bourguiga, R., Horowitz, G., Garnier, F., Hajlaoui, R., Jemai, S., Bouchriha, H., Eur. Phys. J. Appl. Phys. 19, 117 (2002) CrossRef
Hendrick Schön, J., Christian Kloc Appl. Phys. Lett. 78, 3821 (2001) CrossRef
Seto, J.Y.W., J. Appl. Phys. 46, 5247 (1975) CrossRef
Orton, J.W., Powell, M.J., Rep. Prog. Phys. 43, 1263 (1980) CrossRef